CINaM - Centre Interdisciplinaire de Nanoscience de Marseille


Logo tutelle


Sur le Web du CNRS

  • CINaM
  • Campus de Luminy
  • Case 913
  • 13288 Marseille Cedex 9
  • Tel : +33(0)4 91 17 28 00
  • Fax : +33(0)4 91 41 89 16

Accueil du site > Séminaires > A venir ...

A venir ...

Jeudi 05 Avril 2018
Thomas Podgorski
Laboratoire Interdisciplinaire de Physique, UMR 5588, CNRS and Université Grenoble Alpes, 140 rue de la Physique, BP87, 38402 Saint-Martin d’Hères Cedex
Interactions, structure and rheology in red blood cell microflows
In the microcirculation, blood flows through a complex network of arterioles , capillaries and venules whose diameters typically range between 1-10 times the size of cells. The capillary bed is where most exchanges between blood and tissues occur as well as the place where the endothelial function regulates many phenomena under the influence of mechanical stresses and transported chemical fields, which are influenced the details of the local blood flow and rheology. At this small scale, a key feature of microcirculatory blood flows is heterogeneity and self-organization controlled by hydrodynamic interactions, cell mechanics and aggregation or adhesion forces. This results in a non-trivial distribution of the hematocrit, governs local apparent viscosity and stress fluctuations and leads to possible clogging/jamming phenomena in pathological cases. Hematological and mechanical parameters govern elementary features such as structure-rheology coupling, separation at bifurcations and dispersion phenomena, which triggers interest in possible biomedical applications. After an overview of our experimental investigations on the hydrodynamic mechanisms leading to structuration of red blood cell suspensions in microfluidic flows, I will discuss recent developments on the aggregating properties of red blood cells and their consequences on microcirculatory flows.

Jeudi 19 Avril 2018
Pascal Andréazza
ICMN (Interfaces, Confinement, Matériaux et Nanostructures), Université d'Orléans
Aller ou non vers l'équilibre dans les nanoalliages?

Jeudi 21 Juin 2018
Boris Le Guennic
nstitut des Sciences Chimiques de Rennes, UMR CNRS 6226 Université de Rennes 1, 263 Av. du Général Leclerc, 35042 Cedex Rennes, France
Ab initio calculations of lanthanide complexes: from single molecule magnets to circularly polarized luminescence
Complexes containing trivalent lanthanide ions are of great interest in numerous fields due to their specific spectroscopic and magnetic characteristics. In particular, they can give rise to single molecule magnets (SMM) with slow magnetic relaxation, uniaxial magnetic anisotropy and high-energy barrier to the reversal of the magnetic moment. These features originate from the subtle interplay between the spin-orbit coupling and the crystal field interaction created by the ligands surrounding the lanthanide ion. Few general rules for building SMM have been formulated to date but no fundamental magneto-structural relationship explaining the behavior of lanthanide-based SMM has been proposed yet. To this end, and in addition to experimental evidences (SQUID magnetometry, EPR spectroscopy, polarized neutron diffraction...) ab initio calculations (SA-CASSCF/PT2/SI- SO) are one of the most appropriate theoretical tools to get reliable insights into the electronic structure of these compounds. Herein, the recent elucidation of the magnetic behavior of several lanthanide-based complexes is reported.[1] The limits of this computational approach is discussed. Finally, recent advances in the calculations of circularly polarized luminescence (CPL) and paramagnetic NMR (pNMR) in lanthanide complexes are also presented. [1] a) T. T. da Cunha, J. Jung, M.-E. Boulon, G. Campo, F. Pointillart, C. L. M. Pereira, B. Le Guennic, O. Cador, K. Bernot, F. Pineider, S. Golhen, L. Ouahab J. Am. Chem. Soc. 2013, 135, 16332. b) F. Pointillart, B. Le Guennic, O. Cador, O. Maury, L. Ouahab, Acc. Chem. Res., 2015, 48, 2834. c) J.-K. Ou-Yang, N. Saleh, G. Fernandez Garcia, L. Norel, F. Pointillart, T. Guizouarn, O. Cador, F. Totti, L. Ouahab, J. Crassous, B. Le Guennic Chem. Commun. 2016, 52, 14474. d) F. Pointillart, O. Cador, B. Le Guennic, L. Ouahab Coord. Chem. Rev. 2017, 346, 150. e) M. Xémard, A. Jaoul, M. Cordier, F. Molton, O. Cador, B. Le Guennic, C. Duboc, O. Maury, C. Clavaguéra, G. Nocton Angew. Chem. Int. Ed. 2017, 56, 4266. f) L. Norel, L. E. Darago, B. Le Guennic, K. Chakarawet, M. I. Gonzalez, J. H. Olshansky, S. Rigaut, J. R. Long Angew. Chem. Int. Ed. 2018, 57, 1933.