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ABSTRACT: Despite a century of active research on first-order phase transitions, discrepancies between predictions based on
nucleation theory and experiments on nucleation rates are still of several orders of magnitude. This is partly due to the way the work
needed to create a critical cluster is modeled. Here, using slightly modified classical nucleation theory, we reconsider confinement
effect leading to one single and stable critical cluster. We relate the new cluster equilibrium size arising from confinement to the
usual critical cluster size in infinite systems. The single and stable critical cluster opens new experimental horizons: it can be studied
in detail. We stress the model-free nature of these results.

Introduction

Although first-order phase transitions can produce beauty in
everyday life (snowflakes,1 dew, clouds, champagne bubbles),
their extensive study is certainly driven by their vital role in
numerous industrial processes (synthesis of inorganic nanopar-
ticles,2 pharmaceutics3), in vivo processes,4 or meteorology5

predictions. A century of active research has led to the
emergence of a generic two-step mechanism: a cluster of the
new phase first has to nucleate in the older phase before
growing. The underlying reason why a system undergoes
transition is the energy gain this allows: the system is in a
metastable state and tries to reach a more favorable equilibrium
state. The energy released by each molecule passing from the
old phase to the new phase will be proportional to the chemical
potential difference (the driving force of transition) between the
old and new phases: ∆µ ) µold - µnew,eq, with µnew,eq the
chemical potential of the new phase at equilibrium. However,
for the birth of the new phase, work has to be done, at a
minimum to create an interface between the two phases. This
nucleation work acts as a barrier to transition, so that the cluster
of the new phase has first to reach the critical cluster size n*.
Below this critical size, the cluster is more likely to dissolve;
above this critical size it is more likely to grow. This partially
explains the stochasticity of nucleation, and the inherent
induction time before the emergence of the new phase.

Excess Energy: A Tricky Problem. In a system undergoing
first-order phase transition under constant external pressure P
and constant temperature T, the characteristic thermodynamic
potential is the Gibbs free energy G. The change of Gibbs free
energy6 associated with the formation of a cluster of size n (the
number of molecules) can then be expressed in the general form

The first term of eq 1 is the Gibbs free energy gain if the cluster
was just a part of the (new) bulk phase. The second term is an
excess term taking into account deviations of the properties of
the cluster from bulk phase: the interface with the old phase,
homogeneity or heterogeneity of the nucleation process, or
differences in the structure; all model assumptions can be
encompassed by this excess term. Expressing Gexcess is one of

the trickiest problems in nucleation theories, and unfortunately
vital: the probability that a spontaneous fluctuation will give
rise to the new phase directly depends on the work ∆G* )
∆G(n*), needed to form a cluster of critical size. In trying to
overcome this problem, different thermodynamic formulations
of eq 1 have been developed,7 all having their own limitations.
The most obvious problem is how to accurately express the
dependence of interfacial energy relative to the curvature8

imposed by the extremely tiny size of precritical and critical
clusters. Another limitation arises particularly in crystallization:
structure9-12 undoubtedly has great impact on the nucleation
work.

Difficulties in modeling first-order phase transitions do not
only come from the problems encountered to accurately express
Gexcess. This is particularly valuable for nucleation of crystals:
pre-exponential terms in kinetic formulations are difficult to
express to fit collected data, because of the fact that one needs
two-order parameters to properly describe transitions in such
systems. Specially designed nucleation theory have then been
elaborate.13 The objective of here presented study is to show
how to bring experiments at the scale of a single critical cluster,
with the simple aid of finite sized systems to collect data on
Gexcess. Thereby, we prefer using simple expressions for Gexcess

and classical nucleation theory, a combination that has the
advantage to be easily understandable.

Thus, to test the accuracy of nucleation models, there is a
pressing need for experiments at the critical cluster scale. In
the following, we present how confined (i.e., finite-sized)
systems can furnish a single and stable critical cluster, ideal
for detailed study. We must now choose an “experimental-
accessible” first-order phase transition at the scale of its critical
cluster. We choose the crystallization of proteins in solution
because they combine both a substantial individual size (ranging
from several nanometers to several hundred nanometers) and
long time scales, making them more accessible to experimental
technologies than other classes of matter (atomic or molecular
systems). Because of the huge quantity of available data,14 we
chose lysozyme. The solution, a small droplet, is the following:
water, pH 4.5, NaCl (4% w/v), NaAc (0.1 M) (for lysozyme
solubility see).15 Results are calculated for the temperature T
) 293.15 K, so that solubility is equal to 3.1 mg/mL. The
interfacial energy γ is here taken to be γ ) 1 mJ m-2.16 As we
express the size of a cluster via the number n of proteins that
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constitute it, we also need the volume of an individual lysozyme
protein, which is V0 ) 29.7 nm3.17

A Simple Confinement Model. For an approach that is both
generic and simple, applicable to all first-order phase transitions,
we choose the classical nucleation theory. In a solution at
supersaturation �0, the differential form of Gibbs free energy
(eq 1) due to an infinitesimal change in size of an “n-sized
cluster” in an infinite system can be expressed as follows

with kB the Boltzman constant and n the size, in number of
proteins, of the associated cluster. The supposed spherical shape
of the “n-sized cluster” and the interfacial energy are taken into
account through use of A ) 4πγ((3ν0)/(4π))2/3. A hypothesis
of the classical nucleation theory is the infinite sized system:
the supersaturation is considered as a constant all along the
emergence of an “n-sized cluster”. Under this set of hypothesis,
integration of eq 2 gives the total decrease in Gibbs free energy
for an “n-sized cluster”

From eq 3, an analytical expression of the classical critical
cluster size n* in an infinite system, here labeled n*, can be
obtained

In a confined system (a small droplet), supersaturation �0 can
no longer be taken as a constant, and must be corrected,
throughout the evolution of an “n-sized cluster”: once a molecule
join the new emerging cluster, it no longer contributes to the
supersaturation of the solution. In other words, supersaturation
decreases irrespective of the evolution of the “n-sized cluster”,
and the real supersaturation as experienced by this cluster is
expressed as

The size of the system appears via the Ns term, the number of
proteins a droplet has at saturation, the equilibrium state. We
then reformulate eq 2 with the aid of eq 5

The total decrease in Gibbs free energy due to the emergence
of an “n-sized cluster” in a system of size Ns is then given by

Due to the use of the evolving supersaturation �(n), an analytical
form of the critical cluster associated to confined systems, can
no longer be determine. Equivalence between ∆Gconf(n) (eq 7)
and ∆G∞(n) (eq 3) is found when the size of the system tends
to infinite values (Ns f ∞). In other words, the critical cluster
size found via ∆Gconf(n) (eq 7) and ∆G∞(n) (eq 3) corresponds
for high Ns values.

For all the figures presented in this paper, we choose to
represent results from ∆Gconf(n) (eq 7) with solid symbols, and

open symbols for results from ∆G∞(n) (eq 3). Moreover, any
given symbol represents the same point in each figure.

This homemade expression of ∆Gconf(n) (equation 7) shows
confinement effects directly. If we choose to express the size
of the system by using Ns, this is to get a clearer view than the
volume parameter allows: the evolution of ∆µ during the nucle-
ation and growth process will be directly related to the “weight”
(1/Ns) a single protein has on it. If we take the example of a
femtoliter droplet, this could be an infinite system for a highly
soluble protein (high Ns), opposed to a weakly soluble protein
(low Ns). This also demonstrate the importance of temperature:
for protein for which solubility is sensitive to temperature, the
same volume droplet could be an infinite (at a temperature where
solubility is high) or finite (at a temperature where solubility is
low) system.

Confinement Produces Stable Cluster. Confinement (small
volume systems) effects have already demonstrated interesting
features both in condensation of droplets in superheated
vapor18-21 and in crystallization in solution.22,23 These authors
focus on kinetics or crystal habit under the confinement
constraint. Our goal is different: we are interested in the stable
cluster due to confinement effects. Figure 1 describes this stable
cluster, as already pointed out.18-23 We first plot the evolution
of ∆Gconf(n), along the formation of an “n-sized cluster”, for
four different increasing initial supersaturation �0 in a droplet
of size Ns ) 1 × 104 (corresponding here to a 0.78 femtoliter
droplet). The size n, on the abscissa, has been adimensionalized:
�0Ns being the total number of proteins in the droplet, �0Ns -
Ns is the number of excess proteins available for phase transition,
i.e., the maximum size a crystal should reach. Indeed, n/(�0Ns

- Ns) will vary from 0 (no supersaturation has been consumed)
to 1 (all the supersaturation has been consumed).

On the basis of figures similar to Figure 1, previous
descriptions of first-order phase transitions in finite systems

dG∞(n) ) -kBTln(�0)dn + 2
3

An-1/3dn (2)

∆G∞(n) ) -nkBTln(�0) + An2/3 (3)

n∗(�0) )
8A3

27(kBTln(�0))
3

(4)

�(n) ) (�0Ns - n)/Ns (5)

dGconf(n) ) -kBTln(�0Ns - n

Ns
)dn + 2

3
An-1/3dn (6)

∆Gconf(n) ) -kBT∫0

n
ln(�0Ns - n

Ns
)dn + An2/3 (7)

Figure 1. Gibbs free energy (∆Gconf) evolution during formation of an
“n-sized cluster” for different initial supersaturations �0.
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marked out two zones. The first zone is below a critical initial
supersaturation called �crit, here �0 ) 1.998, where no nucleation
can occur. This is due to the evolution of supersaturation
throughout the growth of a precritical cluster: it tries to a reach
critical size, but depletion of the solution decreases the super-
saturation, thus increasing the critical size that needs to be reach.
The precritical cluster chases the critical size, and can never
catch it. The second zone is for supersaturation above �0 )
1.998. Here, the cluster has been sufficiently boosted by a high
starting supersaturation, to reach and overtake the “moving”
critical size, labeled η*. Once critical size η* has been overtaken,
the cluster growth continues to decrease the supersaturation in
the solution, leading to the appearance of a potential well before
thermodynamical equilibrium is reached: the solution is still
supersaturated, but the cluster cannot grow larger a size, labeled
ηstab. Evolution of both η* and ηstab with increasing values of
�0 are shown in Figure 1. The corresponding residual super-
saturation, according to eq 5, �(ηstab), is represented by the
shaded zone in Figure 1.

The Stable Cluster Is Critical Too. In this representation
(Figure 1), two important results can be seen. First, there is a
third zone inside which, although a potential well ηstab actually
exists, it does not represent a gain in Gibbs free energy for the
system. On Figure 1, it corresponds to 1.998 < �0 e 2.182.
The limit value �0 ) 2.182 is interesting in that the system has
equal probabilities of being in one of the two configurations:
energy is the same, and ∆Gconf(ηstab) ) 0. This can provide a
direct measurement of the work associated with the creation of
a critical cluster of size η*.

Second, both the labile equilibrium η* and the stable cluster
ηstab are the classical critical cluster in infinite system n*,
according to equation 3 calculated for the “instantaneous”
supersaturation, noted �(η*) and �(ηstab) respectively, as ex-
pressed by eq 5. This allows a correspondence between finite
and infinite systems, as summarized by the following equalities

These points are the locus where partial derivates, irrespective
to n, of eqs 7 and 3 (for supersaturation calculated from eq 5)
equals zero. Equation 9 shows that the stable cluster ηstab is in
fact a critical cluster, so that we now label ηstab as ηstab

* .
Figure 2 supports this result. A plot of ∆Gconf(n) for an initial

supersaturation �0 ) 2.182 has been drawn in comparison with
three plots of ∆G∞(n), for �0 ) 2.182, �(η*), and �(ηstab

* ). Figure
2 has been adimensionalized compared to the classical case:
n/n* in abscissa, and ∆G(n)/∆G∞

* for the ordinates. We then
find at (1,1), represented as an open square in Figure 2, the
classical critical cluster size n* and its energy barrier height
∆G∞

* , as calculated from eq 3. Two vertical solid lines clearly
show the equivalence in size between extrema of the finite
system and labile equilibrium of the infinite one, as stated by
eqs 8 and 9. This equivalence holds true for any supersaturation
� g �crit.

The Critical Cluster Curve Is Folded. Correspondence
between finite and infinite systems is more than just an
equivalence in size. Both extrema η* and ηstab

* are of the same
essence: they are critical clusters. This may, at first sight, appear
astonishing, given the instability of the first and the stability of
the second. But this difference is due to the fact that the critical
cluster size curve is folded: the finiteness of the system gives
rise to an unstable branch (η*) and a stable branch (ηstab

* ). This
statement is explained with the help of Figure 3, which focuses

on the area of interest. On this figure, we first plot the classical
n*-curve of infinite systems. Then we plot sizes of η* and ηstab

*

versus initial supersaturation �0, as calculated and already
presented in Figure 1. The curve �0Ns - Ns is the number of
excess proteins versus �0. The shaded area, above the ηstab

* curve
corresponds to the shaded area in Figure 1: this is the residual
supersaturation �(ηstab

* ). To clearly show that finite system
extrema come from the folding of infinite critical cluster size
curve n*, possible intersections of �(n) with the n* curve must
be taken into account. We plot �(n), namely the supersaturation
experienced by the cluster during its evolution, for the same
set of initial supersaturations as Figure 1, for 0 e n e �0Ns -
Ns.

For �(n) with �0 ) 1.814, which is smaller than �crit, we see
that it is impossible for the system to generate even a single
critical cluster: �(n) never intersects the n* curve. For �(n) with
�0 ) 1.998, which is exactly �crit, the curve �(n) intersects and
is tangent to the n* curve at one single point. Yet, for the two
other �(n) curves, plotted for �0 ) 2.182 and 2.366, the critical
cluster can be overtaken: this is the location of the first
intersection point with the n* curve, corresponding to η*. By
overtaking, a cluster can grow, thus still decreasing �(n), leading
to a second intersection point with n*, corresponding to ηstab

* :
the growing cluster has caught up with its critical size.
Horizontal lines connecting similar open and solid symbols show
correspondence between finite and infinite systems as expressed
by eqs 8 and 9.

η∗ ) n∗(�(η∗)) (8)

ηstab ) n∗(�(ηstab)) ⇒ ηstab
∗ (9)

Figure 2. Correspondence of labile η* and stable ηstab
* equilibrium in

finite system with infinite systems.
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The usual interpretation of the n*-curve is as follows: each
supersaturation �0 has a corresponding critical cluster required
to overcome, n*. But this curve can also be interpreted as an

equilibrium curve: to compensate for the finite size of a cluster,
the system must always be supersaturated. The smaller a cluster
is, the greater the supersaturation must be. This is the driving

Figure 3. Folded critical cluster size curve for a finite system, and correspondence with an infinite system. Please note that axes do not start at zero,
so that vertical dotted lines do not clearly appear to be the starting value, for n ) 0, of �(n) lines.

Figure 4. Zoom of Figure 3 on the second intersection point of the �(n) curve with the n* curve, calculated for �0 ) 2.182.
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force for Oswald ripening. The importance of this equilibrium
interpretation is fully illustrated in its application to finite
systems: the system, in nucleating a single cluster, must, once
critical size η* has been overtaken, always keep sufficient
supersaturation to balance the finite size of this cluster. This
can not be done for clusters larger than ηstab

* . This double
interpretation of the n* curve leads here to η* and ηstab

* curves,
which once joined give the folded n* curve.

The Critical Folding Point. We here define the critical
folding point (CFP) as the point where η* ) ηstab

* , thus
corresponding to �crit. CFP location directly depends on the size
Ns of the system. Considering points of the classical critical
cluster size curve, we determine the corresponding CFP super-
saturation in the infinite system using

This relation can be seen in Figure 3, at the point represented
as an open hexagram, where the n* curve is tangent to the
�(n) curve, whose slope is “-Ns”. Resolution of eq 10 gives
the supersaturation �crit

∞ , the equivalent supersaturation of CFP
in the infinite system. Clusters corresponding to higher
supersaturations on n* curve will give rise to the unstable
branch η*. Below that critical supersaturation, clusters give
rise to the stable branch ηstab

* . In other words, the n* curve is
separated into two parts: one where the first intersection with
the �(n) curve occurs, and the other where the second
intersection occurs. Because eq 10 gives us the supersatu-
ration �crit

∞ , we thus know the associated critical cluster size
n*, calculated with eq 4: n*(�crit

∞ ). The corresponding initial
supersaturation �crit in the “Ns-sized system” is found using
eq 5 for n ) n*, so that we determine (�crit, n*), the location
of CFP: the solid hexagram in Figure 3. Equation 10 gives
the smallest cluster that can be stabilized in an “Ns-sized
system”, and use of eq 5 directly gives �crit, the initial
supersaturation below which nucleation cannot occur.

A Simple Way to Construct the Folded Curve. Up to now,
we have plotted the folded critical cluster size curve of the
“Ns-sized system” from ∆Gconf, according to eq 7. But here
we propose a simpler and faster method. This method only
relies on n* (equation 4), �(n) (equation 5) and knowledge
of size correspondence (eqs 8 and 9): each n* has a
corresponding single point on the folded curve, either on the
stable or the unstable branch. �(n*) can therefore be simply
expressed from eq 5, giving

Thus, for any size n* there is a corresponding initial supersatu-
ration �0 in the “Ns-sized system”. The folded critical cluster
size curve is the plot of (�0, n*) points, exactly superimposed
on the two branches η* and ηstab

* in Figure 3. This clearly shows
that both extrema emerging from confinement are of the same
essence: they are critical clusters.

To support, once again, the affirmation that the stable cluster
ηstab

* is critical, we provide Figure 4, which is a zoom of Figure
3 on the second intersection point of �(n) curve with the n*
curve, calculated for �0 ) 2.182. At this intersection point,
cluster ηstab

* is in equilibrium with a solution at supersaturation
�stab. We represent two other points corresponding to the addition
and the substraction of a single protein to the cluster of size
ηstab

* . This gives supersaturations �stab
+1 and �stab

-1 corresponding

to sizes ηstab
* +1 and ηstab

* -1, respectively. To evidence that ηstab
*

is a critical cluster, we propose the following experiment: if
we seed the cluster ηstab

* in an infinite solution at supersaturation
�stab
+1 , it is undercritical, so that it dissolves; if we seed the cluster

ηstab
* in an infinite solution at supersaturation �stab

-1 , it is now
overcritical, so that it grows; last, if we seed the cluster ηstab

* in
an infinite solution at supersaturation �stab, it is critical, so that
it can either grow or dissolve. Thus, the cluster ηstab

* is not only
of the size of the critical cluster, it is also the critical cluster,
stabilized by the confinement effect.

A Single Cluster Window. How reliable is our “single
nucleation event” hypothesis? To test its limits, we reformulate
eq 11 for the following case: the synchronized nucleation and
growth of two clusters, which is almost a statistically impossible
event, and therefore the most unfavorable case for our hypoth-
esis. We can then construct, in the same way as for a single
event, the folded critical cluster curve for either of the
two events, eq 11 then becoming

Equation 10, giving the initial supersaturation �crit above which
these two synchronized clusters can nucleate, is given by the
following modification

This minimal �crit is obviously higher than for the single event,
and is shown in Figure 3 as the “2 nucleus limit”, lying at �0 )
2.233. Our hypothesis is thus strictly valid below this super-
saturation limit. Its validity can only be extending to higher
values on the base of kinetic or statistical considerations which
will not be discussed here.

Discussion

The special case of crystallization of proteins in solution
presented here can easily be translate to other kinds of materials
(atomic or molecular systems, viruses, colloids). It thus offers
a way to fine-tune the size (ηstab

* ) of the generated crystal,
provided the droplet volume can be accurately controlled. Here
we take the value Ns ) 1 × 104, to reveal the confinement effect:
this droplet is subfemtoliter in our solution conditions, femtoliter
being equivalent to Ns ) 1.2875 × 105. But as we have said,
volume will be directly related to solubility of the material, so
that the range of volumes where confinement occurs for
materials other than the lysozyme presented here cannot be
predicted. However, technologies such as microfluidics,24-27

microfabricated arrays,28 emulsions,29,30 and nanoscale “dispens-
ers”31,32 allow a great range of volumes to be generated. These
technologies could offer ways to take advantage of here
presented results. First, as already said, to obtain one single
crystal per droplet, thus coming from a single nucleation event.
Second, and microfluidics particularly fits this goal, nucleation
and growth can be totally decoupled: several droplets, where
nucleation cannot occur, can be successively added to a droplet
containing a single cluster. In so doing, nucleation and growth
being totally separated, the properties of the “growing droplets”
can be fine-tuned. We thus arrive at a crystal of scalable size,
emerging from one single nucleation event. Third, this confine-
ment effect provides a straightforward way to test accuracy of

∂n∗

∂�0
) -Ns (10)

�0 ) �(n∗) + n∗

Ns
(11)

�0 ) �(n∗) + 2
n∗

Ns
(12)

∂n∗

∂�0
) -1

2
Ns (13)
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Oswald ripening models: by combining two droplets, each
containing a crystal of different size, the experiment is made
simple.

Results presented here rely on the new and straightforward
explanation we offer of the extrema arising from confinement:
they are due to the folding of critical cluster size curve. Starting
from classical nucleation theory, we found a simpler method
(eqs 10 and 11) relying only on the existence of a critical size
and the evolution during the nucleation and growth process of
the driving force ∆µ. This does not even depend on the form
of the critical cluster size curve, which could differ widely
without invalidating our method and results. This led us to affirm
their highly model-free aspects. Although results presented here
are clearly not more quantitative than could be produced by
classical nucleation theory, they offer a clear explanation of the
underlying physics, and making it possible to simply evaluate
whether confinement should be taken into account. This
approach can be used for all first-order phase transitions,
provided the “Ns” term can be expressed.

Finally, we identify a clear window of parameters where the
nucleation event is alone. This window is defined with the aid
of thermodynamics alone. Thus, it gives rise to one single and
stable critical cluster. It contrasts with usual experimentations
at the scale of critical clusters, which have to monitor the overall
evolution of an uncontrolled distribution of precritical, critical
and postcritical clusters. Even if impressive results9 have been
extract from such experiments, confinement effects would be
of great help: it provides a new way to study critical clusters
and nucleation to test the related models without any interference
from kinetics or other clusters. The stability of the generated
clusterwill, for thefirst time,allowdirectextensiveexperimentation.
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