

Modélisation des propriétés de transport atomique dans les combustibles nucléaire

M. Freyss, B. Dorado, G. Martin, M. Bertolus P. Garcia, G. Carlot, M. Fraczkiewicz

CEA, Cadarache Département d'Etude des Combustibles (DEC) DEN/DEC/SESC/LLCC

CADXRACHE

Plan de l'exposé

CADKRACHE

1. Contexte

- Comportement des matériaux sous irradiation
- Modélisation multi-échelle des matériaux nucléaires

2. Modélisation *ab initio* des matériaux pour le nucléaire

• Particularités des actinides

3. Etude du transport atomique

- Stabilité et migration de défauts ponctuels
- Dégâts d'irradiation par cascades de déplacements

Le combustible sous irradiation

Diffusion des gaz de fission

Diffusion des gaz de fission

Une étape dans la modélisation multi-échelle

- <u>Défi</u>: comprendre l'évolution de la microstructure et du relâchement des gaz de fission
 - → Attention particulière aux défauts structuraux et au comportement d'éléments volatils

Calculs de structure électronique

- Type de défauts ponctuels (lacunes,...)
- Localisation, solubilité de PF (gaz rares,...)
- Propriétés de transport atomique (migration)

Couplage à la modélisation à l'échelle supérieure

- Dynamique moléculaire classique: ajustement de potentiels
- Modèles cinétiques de diffusion : énergies d'activation, etc
- Dynamique d'amas

CADXRACHE

• Monte Carlo cinétique,

Couplage aux études expérimentales

Matériaux nucléaires d'intérêt

<u>Carbure</u> <u>d'uranium</u>

<u>Carbure</u> <u>de silicium (3C)</u>

Structure Fluorine Isolant Liaison ionique (U⁴⁺, O²⁻) Structure NaCl **Métallique** Liaison complexe Structure ZnSe Isolant Liaison covalente

CADARACHE

Les électrons 5f dans les composés d'actinide

UO₂: isolant, électrons 5f localisés, fortes corrélations sous-estimées par la DFT ⇒ DFT + U

Les électrons 5f dans UO₂

UO₂ cristallin

Désaccord important entre les résultats de la littérature (énergies de formation de défauts,...)

E relative	Occupations
(meV/UO ₂)	électroniques
0	# =
44	=
125	==44_
350	==4-4
	E relative (meV/UO ₂) 0 44 125 350

Même problème avec les fonctionnelles hybrides (PBE0, HSE06,..).

1^{er} état métastable systématiquement atteint par le code si aucun contrôle :

 Erreur de 1,4 eV pour supercellule de 96 atomes (utilisée pour défauts)

Nécessité de contrôler les occupations pour atteindre l'état fondamental

Très bonne description de UO₂ cristallin en DFT+U avec contrôle des occupations électroniques

CADARACHE

Objectifs et méthodes

Méthode développée pour le cristal parfait afin d'atteindre systématiquement l'état fondamental de UO₂:

Non prise en compte des symétries (lève les dégénérescences)

• Trouver les occupations des orbitales 5f de l'état fondamental des atomes d'uranium \rightarrow nécessite une exploration systématique

 Imposer et contrôler les matrices d'occupation lors du calcul pour le cristal parfait et les systèmes avec défauts

Obtenir une meilleure description de la <u>structure électronique</u> de UO₂ et de ses propriétés de cohésion, en prenant en compte les fortes corrélation des électrons 5f

Revisiter les <u>énergies de formation et de migration de défauts</u> en utilisant la méthode de contôle des matrices d'occupation électronique

Méthode PAW (Projector Augmented Waves), code VASP Echange-corrélation: DFT+U, approche de Liechtenstein U=4.50 eV, J=0.51 Valeurs de U et J basées sur des résultats expérimentaux de photoémission

DFT= GGA-PBE

Défauts ponctuels dans une supercellule de 96 atomes

Défauts « neutres » = supercellule neutre, mais redistribution des charges

CADARACHE Atelier Modélisation Multi-échelle, 16-17 décembre 2010

B. Dorado et al., Phys. Rev. B **79**, 235125 (2009)

Propriétés du cristal d'UO₂

CADKRACHE

Certaines propriétés d'UO₂ sont difficiles à décrire par calculs *ab initio*, ou rendent les calculs trop coûteux en temps

- Fortes corrélations des éléctrons 5f (DFT+U)
- L'effet relativiste de couplage spin-orbite: négligé
- Antiferromagnétisme non-colinéaire à basse température (T< 30K)
 Paramagnétisme à plus haute T

Approximation par un ordre antiferromagnétique colinéaire 1k dilatation (c/a>1) ou compression (c/a<1) selon si on se trouve dans l'état fondamental ou dans un état métastable

Figures par Laskowski *et al.* PRB **69**, 140408 (2004)

- Distorsion Jahn-Teller: distorsion du sous-réseau oxygène Plus stable de 50 meV/UO₂ comparé à la fluorine [*B. Dorado* et al.,*PRB* 82, (2010)]

- Grandes supercellulles (~ 100 atomes) pour l'étude des défauts

Défauts ponctuels et gaz de fission dans UO₂

• Type de défauts lacunes, interstitiels, paires de Frenkel, défauts de Schottky

Gaz de fission Kr et Xe et iode

Stabilité: énergies de formation, énergies d'incorporation

Migration: énergie de migration méthode *nudge elastic band* (**NEB**)

CADXRACHE

Défauts ponctuels dans UO₂

Energies de formation de défauts: JT vs. fluorine

E ^F (eV)	Fluorine	Jahn-Teller
Oxygène interstitiel	-0.05	0.47
Oxygène lacune	5.36	5.72
Uranium interstitiel	5.38	5.05
Uranium lacune	10.43	9.56
1 ^{er} défaut Schottky lié *	3.32	4.07
2 ^{ème} défaut Schottky lié **	2.54	3.26
3 ^{ème} défaut Schottky lié ***	2.82	3.41
défaut Schottky isolé	10.66	10.62
Paire de Frenkel uranium	15.79	15.28
Paire de Frenkel oxygène	5.33	6.19

B. Dorado, Thèse de l'Université Aix-Marseille II (2010)

- Effet modéré du champs cristallin, sauf pour Io
- Energies de formation de l'oxygène et de l'uranium > 5 eV
- Diffusion via défauts de Schottky
- Tendance des lacunes à piéger les gaz de fission ?

Auto-diffusion dans UO₂

Expérimentalement: énergies d'activation déjà publiées dans la littérature (Auskern 1961, Belle 1969, Marin 1969, Contamin 1972, …).

- Généralement pas de contrôle de pression partielle d'oxygène
- Pas de mesure de la concentration en impuretés
- Mécanismes de migration dominants inconnus

Nouvelles expériences menées au DEC-SRMA-ECP

Modélisation: migration modélisée dans le passé par

- Potentiels empiriques (Catlow 1977): mécanismes de migration
- **DFT-standard** (Dorado-Durinck JNM 2010): DFT-GGA
- DFT+U (Gupta PRB 2010) sans la méthode NEB d'optimisation du chemin de migration

Utilisation de l'approximation DFT+U et de la méthode NEB pour déterminer les énergies de migration des défauts

Chemins de migration de défauts dans UO₂

Energies de migration de défauts dans UO₂

migration oxygène		migration uranium		
	GGA+U		GGA+U	LDA+U*
Interst. direct	3.22 eV	Interst. direct	7.91 eV	-
Interst. indirect	0.93 eV	-	-	-
Lacunaire <100>	0.67 eV	Lacunaire <100>	7.16 eV	7.59 eV
Lacunaire <110>	2.47 eV	Lacunaire <110>	5.45 eV	6.09 eV

*D. Andersson et al., collaboration LANL

- Mécanisme d'auto-diffusion de l'oxygène :
 - Interstitiel indirect

CADXRACHE

- Lacunaire suivant <100>
- Mécanisme d'auto-diffusion de l'**uranium** :
 - Lacunaire suivant <110>
 - Associé à un déplacement d'atomes oxygène : E_M = 3.55 eV

LDA+U = bon accord avec GGA+U. Plus grande énergie de migration due à un plus petit paramètre de maille? (La LDA tend à sur-estimer les liaisons)

Diffusion de l'oxygène dans UO₂

CADXRACHE

Comparaison aux résultats expérimentaux: mesures de **conductivité électrique** + expériences **SIMS** + contrôle précis des conditions expérimentales (p_{O2}, concentration en impuretés) *P. Garcia, G. Carlot, M. Fraczkiewicz, G. Baldinozzi, D. Siméone, C. Petot, G. Petot, B. Pasquet, C. Davoisne...*

La diffusion de l'oxygène obéit à un mécanisme interstitiel Garcia et al., J. Nucl. Mater. 400, 112 (2010)

Les calculs DFT+U montrent que l'oxygène diffuse dans UO₂ par un mécanisme interstitiel indirect quand la diffusion est assurée par les interstitiels

Valeur expérimentale de l'énergie d'activation à la diffusion E_a:

$$\frac{D}{\sqrt{p_{O_2}}} \propto \exp\left(-\frac{E_a}{kT}\right) = \exp\left(-\frac{E_F + E_m}{kT}\right)$$

Valeur expérimentale $E_a = 0.75 \pm 0.08 \text{ eV}$

Energie de migration calculée : $E_m = 0.93 \text{ eV}$ Energie d'activation calculée: $E_a = E^F + E_m = 0.88 \text{ eV}$ Dorado et al., Phys. Rev. B (2010) à paraître

Très bon accord entre les valeurs expérimentales et calculées

Auto-diffusion dans UO₂

➢ Bon accord aussi avec l'énergie de migration de Kim et Olander pour un mécanisme lacunaire [K. C. Kim and D. R. Olander, J. Nucl. Mater. 102, 192 (1981)]: E_m= 0.67 eV vs. E_m = 0.51 ± 0.13 eV.

Comparaison avec d'autres résultats récents de la migration de l'oxygène calculés en DFT+U

Gupta et al. Phys. Rev. B 81 (2010)

Energie de migration négative pour le mécanisme interstitiel indirect: $E_m = -1.13 \text{ eV}$ \rightarrow Etat métastable

Influence de la charge des défauts sur les propriétés de transport ?

Manque de données expérimentales pour la diffusion de défauts cationiques avec les mêmes précautions que pour les études CEA de la diffusion de l'oxygène

Formation de défauts lors de cascades déplacements dans UO₂ Guillaume Martin

 Potentiels empiriques: modèle ions rigides (charges fixes ponctuelles)
 Potentiels de paires de type Buckingham (paramétrisation de Morelon du CEA: propriétés du cristal, calculs *ab initio* d'énergie de formation de défauts...)

Maille 68×68×68 (3 million d'atomes), stabilisée 20 ps à 300K et 0 GPa

Impulsion d'énergie donnée à un atome (Primary Knock-on Atom PKA) \rightarrow 1 to 80 keV

- Cascades simulée avec N,V,~E constants
- Contrôle de la temperature aux limites de la boîte (3 Å)
- Condition aux limites périodiques
- Pas de temps variable
- Approche statistique pour l'interprétation des résultats: plusieurs cascades dans les mêmes conditions avec différentes localisations and directions du PKA.

Cascade : étapes successives de formation de défauts et recombinaison CADXRACHE

Etapes succesives de cascades dans UO₂ Uranium PKA 10 keV a) 0 ps b) 0.2 ps Température 700 K **Atomes déplacés** de plus de 0.2 nm **Etape ballistique Positions initiales** 2 nm c) 1.3 ps c) 20 ps **Relaxation Etape thermique** Localisation des défauts lacunes: coeur de la cascade **Interstitiels** :péripheries G. Martin *et al.*, des sous-cascades Journal of Nuclear Materials 385, 351 (2009)

CADKRACHE

22

Dégât produits après cascade de déplacements

Couplage avec analyses MET d'échantillons irradiés aux ions (thèse d'A. Michel)

Conclusion

CADXRACHE

Modélisation des propriétés d'UO₂ améliorée par la DFT+U

Utilisation prudente de la DFT+U: pas de calculs fiables sans procédure pour éviter les états métastables

Energies de formation et de migration des défauts en utilisant la méthode de contrôle des occupations électroniques: permet d'atteindre l'état d'énergie le plus bas

Confrontation très favorable et encourageante des résultats DFT+U et des résultats expérimentaux obtenus au CEA pour la migration de l'oxygène

Perspectives

CADXRACHE

> Test de validation de la méthode **DMFT** pour le cristal parfait d'UO₂ (**CEA-DAM**, code **ABINIT**). Méthode plus exacte pour traiter les fortes correlations et possibilité de s'affranchir (partiellement?) des états métastables

Couplage favorable des calculs DFT+U et des expériences pour les défauts uranium également? Pour les gaz de fission?

Collaboration LANL + étude en potentiels empiriques

Renforcer le lien entre les calculs ab initio et les calculs aux échelles supérieures

Etudes similaires (DFT+U, migration) appliquées aux carbures UC, PuC et (U,Pu)C

Remerciements

KRACHE

C A D

Calculs DFT+U: B. Amadon, G. Jomard, M. Torrent, F. Jollet (CEA DAM, Bruyères-le-Châtel)

Expériences diffusion oxygène: G. Baldinozzi,

D. Siméone, C. Petot, G. Petot (CEA-CNRS-Ecole Centrale de Paris, Gif-sur-Yvette, France), B. Pasquet (CEA Cadarache, France), C. Davoisne (CEA Cadarache / Lille Univ., France)

Basic Research for Innovative Fuel Design for GEN IV systems

Computing facilities: **GENCI** Grand Equipement National de Calcul Intensif

GdR MATINEX https://matinex.cnrs-orleans.fr/

Appel à projet 2011 du Groupement MATINEX

Le groupement de recherche MATINEX relatif aux MAtériaux INnovants en conditions EXtrêmes a été renouvelé pour la période 2011-2014.

Il s'inscrit dans le cadre des recherches sur les **matériaux céramiques pour le combustible** pour les réacteurs nucléaires de Génération III et IV et s'articule selon trois grands thèmes

Thème 1 : Physicochimie des matériaux de confinement

1 - Matrices vitreuses de conditionnement des déchets nucléaires issus des opérations de traitement du combustible usé

2 - Matrices spécifiques pour produits de fission et produits d'activation volatils (iode, chlore, carbone, krypton, tritium)

Thème 2 : Matériaux céramiques pour le combustible, son gainage et les structures de coeur

- 1 Combustibles fissiles / fertiles avec et sans actinides mineurs
- 2 Cibles de transmutation (fin des travaux sur 2 ans)
- 3 Matériaux de structure céramique

Thème 3 : Simulation - Modélisation – Méthodes

1 - Modélisation

CADKRACHE

2 - Outils expérimentaux et approches méthodologiques

Atelier Modélisation Multi-échelle, 16-17 décembre 2010

Date limite pour l'envoi des projets: 10/01/2011