Elastic instabilities in silicon-germanium films

Thomas Frisch, Jean-Noël Aqua IM2NP, CNRS, Marseille

CSCAMM, College Park October 25, 2010

Introduction

Pattern forming instabilities are ubiquitous in non-equilibrium dissipative system: three classical examples

Turing Structures

Alan Turing

Hydrodynamics convection

Lord Rayleigh

Bénard

Assenheimer and Steinberg, PRL, 1993

Mullins-Sekerka instability

Dendritic growth, directional solidification, solid-liquid transition, Pocheau

W. Mullins

Common denominator:

 Finite wavelength instabilites, such that there exists a range of unstable wave numbers
 Exp(st) Exp(I k x)

Motivation: Ge_xSi_{1-x}/Si (001) Coherent Islands: instability regime

Floro et al, PRL 79, 3946 (1997)

Spencer, Voorhees, Davis and Mac Fadden, PRL, 1991

Spencer, Voorhees, Davis, PRB, 1993

Spencer, Voorhees, Tersoff, 2001

Ge/Si (001), 600°C

G. Medeiros-Ribiero, et al., Science 279, 353 (1998).

Nucleation regime

3.5nm 35 nm

Tromp

Lagally,

PRL 2000

Stangl et al,

RMP, 2004

Questions

- What is the coarsening dynamics?
- What is the influence of the anisotropy of surface energy ?
- What is the influence of the film height?

Outline

- Asaro-Tiller-Grinfeld Instability
- The Mullins model for hetero-epitaxy
- Isotropic Case (Non interupted Coarsening)
- Anisotropic Case (Interupted Coarsening)
- MBE experiments during annealing
- Conclusion and Perspectives

Grinfeld-instability of liquid-solid helium

Kassner, Misbah et al, 2001, Phys Rev E,

Phase field methods

Bodensohn 1986, Balibar 1991 Balibar 2005 RMP

The Asaro-Tiller-Grindfeld Instability: morphological instability of a stressed crystal

Germanium atoms are larger then silicon atoms

No cracks or dislocations for small misfit

MISFIT $\delta a/a$ of the order of 4.2%

Heteroepitaxy : paradigm Si/Ge systems

Stransky-Krastanov mode of growth. **During annealing**, **islands**, separated by a wetting layer, **form and coarsen**.dominated by surface diffusion

$$a=a_{f}, \delta a=a_{film}-a_{substrate}$$

Vegard Law: $a_{film} = x a_{ge} + (1-x) a_{si}$

$$l_0 = \frac{\gamma}{E(\frac{\delta a}{a})^2}$$

$$t_0 = l_0^4 / (D\gamma)$$

Pimpinelli, Villain « Physics of crystal growth», 1998Stangl et al, Review of Modern Physics 2004C. Misbah, O. Pierre-Louis and Y.Saito, Review of Modern Physics, 2010

Heteroepitaxy, Si/Ge (IV/IV) or group III/V InGaAs/GaAs

Elastic instability: island formation is ubiquitous

 $l_0^{-1} = \frac{E}{\gamma} \left(\frac{\delta a}{a}\right)^2$

 $t_0 = l_0^4 / (D\gamma)$

Floro **et al**, PRB 99

Nucleationless formation of islands in heteroepitaxy from surface ripples.

Sutter et al. PRL 2000

Berbezier, Ronda, PRB 2007, vicinal surface SI (001)

The « Mullins » surface diffusion model

No alloying, no volume diffusion

$$\frac{\partial h}{\partial t} + \nabla \cdot \mathbf{J} = 0 \qquad \qquad \mathbf{J} = -D\nabla \mu$$

Elastic energy Surface energy Wetting potential
$$\mu = \mathcal{E}[h] + \gamma(h)\kappa(h) + \gamma'(h)/\sqrt{1 + |\nabla h|^2},$$

 $\kappa(h)$ is the curvature

Wetting potential model

$$\gamma(h) = \gamma \left[1 + c_w \exp(-h/\delta) \right]$$

Chiu, Gao, 1993, Muller and Kern, F. Liu Spencer, Tekalign, Golovin, Davis, Voorhess, PRB, 2003 Levine et al, Phys Rev B, 2007 Aqua et al, Phys Rev B, 2007

Film and substrate elasticity

Elastic
energy
$$\partial_j \sigma_{ij}^{\alpha} = 0$$

 $E^{(\alpha)} = \frac{1}{2} e_{ij}^{(\alpha)} \sigma_{ij}^{(\alpha)}$ $e_{ij}^{(\alpha)} = \frac{1}{2} (\partial_j u_{\alpha,i} + \partial_i u_{\alpha,j})$
 $\sigma_{ij}^{(\alpha)} = \frac{E}{1+\nu} [e_{ij}^{(\alpha)} + \frac{\nu}{1-2\nu} e_{ll}^{(\alpha)} \delta_{ij}]$ $\alpha = (\text{Si soit Ge})$

Boundary conditions :Stress and strain are continuous at the Si/Ge interface, no dislocations.

$$\boldsymbol{u}_s = \tilde{\boldsymbol{u}}_f \text{ and } \boldsymbol{\sigma}_s \cdot \hat{\boldsymbol{z}} = \boldsymbol{\sigma}_f \cdot \hat{\boldsymbol{z}} \quad \text{at} \quad z = 0^{-1}$$

 $\sigma_f \cdot \hat{n} = 0$ at z = h(x, y, t) No stress at the free boundary (non-linear geometrical conditions)

Linear analysis :

$$\begin{aligned} h(x, y, t) &= h_0 + \delta h \, e^{i \mathbf{k} \cdot \mathbf{r} + \sigma t} \\ k - |\mathbf{k}| \\ \sigma &= -c_w k^2 + \left(\frac{\delta a}{a}\right)^2 k^3 - k^4 \end{aligned}$$
$$\gamma(h) &= \gamma \left[1 + c_w \exp(-h/\delta)\right] \end{aligned}$$

Flat film stable for $h_0 < h_c$

$$\begin{aligned} &\frac{\partial h}{\partial t} = \frac{\partial^2}{\partial x^2} \left\{ -\left[1 + c_w f\left(\frac{h}{\delta}\right)\right] h_{xx} + \frac{c_w}{\delta} \frac{f'(h/\delta)}{\sqrt{1 + h_x^2}} - \omega_1 \mathcal{H}(h_x) \right. \\ &+ \omega_2 (2hh_{xx} + h_x^2) + \omega_2^* (2\mathcal{H}\{[h\mathcal{H}(h_x)]_x\} + [\mathcal{H}(h_x)]^2)\right\}, \end{aligned}$$

Singular term Nonlinear nonlocal terms which prevents the singularity.

$$\gamma(h) = \gamma_f [1 + c_w f(h / \delta)]$$

 $f(\xi) = \exp(-\xi)$

f is the wetting potential

 $\mathcal{H}[h_x] = \mathcal{F}^{-1}\{|k|\mathcal{F}[h]\}$

H is the Hilbert transform, multiplication by k in Fourrier Space

NO singularity when BOTH wetting (small, not diverging) & non-linear non-local effects are considered

Numerical Simulations using Spectral Methods

the expense of the small ones

Coarsening dynamics: numerical simulations

1. roughness

$$w(t) = [\langle h^2 \rangle - \langle h \rangle^2]^{1/2}$$

 $w(t) \sim t^{\beta}$

JNA, Frisch, Verga, PRB 07

2. Number of islands

 $N(t) \sim 1/t^{\zeta}$

Dynamics of the coarsening

Some discussion about the coarsening exponent:

Annealing Hypothesis : No facetting :

No alloying :

Silicon/germanium island are faceted

Silicon Germanium island

AFM, RMP 04, Rastelli, the (105) is apparent

Surface energy anisotropy

$$\mathcal{F}^{s} = \int \gamma(h, n) \sqrt{1 + |\nabla h|^{2}} dr$$

$$\mathcal{F}^{el} = \int_{z < h(r)} \mathcal{E}^{el}(r, z) dr dz. \qquad n \text{ is normal to the surface}$$

$$\mathbf{F} = \mathbf{F}^{s} + \mathbf{F}^{el} \qquad \mu = \delta \mathcal{F} / \delta h$$

The surface energy depends on the orientation and also on the elastic-strain. We neglect the second effect but we take a minium for the (105) orientation.

Effect of the anisotropy of surface energy (Gamma Plot)

In a crystalline solid, the surface energy depends on the orientation $\gamma(n)$ and also on the elastic-strain.

Y. W. Zhang, Phys Rev B, 61, 2000

Numerical Protocol

Evolution of the island density

FIG. 8. Numerical results of Eq. (32). Evolution of the island density versus time for, from bottom to top, the cases (a,b,c,d,e,f).

Time evolution

time

Top= 9 ML L=128 I_0 I_0 =27 nm

Bottom = 20.2 ML Anneal time is 300 Minutes

Simulations

Evolution of the roughness

Coarsening is interrupted

Dots density and size can be controled: coarsening is interupted

Distribution of island sizes

Dispersion of island size distribution: r.m.s.

FIG. 14. Standard deviation Δv of the island size distribution as function of the amount of matter and (inset) relative width $\Delta v / \langle v \rangle$.

Aqua-Frisch, 2010, Phys Rev B 76 L > L', the wetting energy increases, but the surface energy decrease and the elastic energy remains constant.

Energetic model

 $\Delta E = \gamma_f L^2/\cos \alpha - L^2 \gamma(h_0) + (1/n - L^2) [\gamma(h) - \gamma(h_0)] - \lambda_e V.$

⁴³L. G. Wang, P. Kratzer, M. Scheffler, and N. Moll, Phys. Rev. Lett. 82, 4042 (1999).

Two-island model

Two free parameters are: the height of the wetting layer,

and the surface density of pyramids

V1 = V2 is a valley with a very small slope.

J.-N. Aqua, T. Frisch, PRB, 82, 085322, 2010

Effect of the flux

The flux does not really affect the density of island for $h_d = 11.7$

Experimental results

• Si_{0.7}Ge_{0.3} annealed at 550 celcius for 54 hours for different deposited height.

MBE group of Isabelle Berbezier

Interupted corsening is also observed experimentally

Experiments,I. Berbezier, 2002, J. Phys Cond Matters, SiGe/Si

Numerical simulations

AFM

Si0.70Ge0.30 550°C

Experiments

as grown 15.8 Monolayers 18 Hours annealing

54 hours annealing

Time

$Si_{0.70}Ge_{0.30}$ (550°C) ρ_{max} as function of the amount of matter

Experiments density falls with the same order of magnitude as the theory but a more detailed comparaison is needed:

In particular, we are doing Ab_Initio calculation to extract the value of the diffusion coefficient (V. Oison)

Conclusion

- The elastic instability has a rich nonlinear regime
- We derived a fast methods for Stransky-Krastanov growth modeling in the instability regime
- Coarsening is interupted due to the interplay between anisotropy of surface energy and the wetting effect.
- We may control the dots size on Si/Ge by varying the deposited height and the strain

How sensitive is the dynamics on the effect of surface energy anisotropy?

Θc

Question: For which values of γ_2/γ_0 the dynamics changes from non-interupted coarsening to interupted coarsening?

Is the sharpness at Θ_c is important

Close the instability threshold, it can be possible to compute a bifurcated solution and to verify the existence of periodic solutions (Landau expansion with anisotropy). One ingredient is perioddoubling or tripling

Θ

Spencer, Voorhees and Tersoff, 2001, Tersoff, APL, 2003 Tu and Tersoff, PRL 2004, Tu and Tersoff, PRL 2007

Perspectives on alloying.

- Alloying phenomena during Si/Ge growth, effect of surface segration effect,
- Application are on the III/V semiconductor.

• Nonlinear coupling between the compositional and the morphological instabilies. The alloys concentration is spatially inhomogenous and it has an impact on the opto-electronic propreties.

•Electron Phase microscopy analysis of alloys composition (P. Donnadieu, SIMAP, Grenoble, and I. Berbezier IM2NP)

Collaborators: Adrien Gouye, Isabelle Berbezier, Antoine Ronda, Alberto Verga.

Relevant Publications :

J-N Aqua, T. Frisch and A. Verga, Phys Rev B, 2007
J.-N Aqua, T. Frisch, Phys Rev B, 2008, (Elastic Kinetic Monte-Carlo, island size distributions)
J.-N Aqua, T. Frisch and A. Verga, Phys Rev E 2010 (Flux effect)
J.-N Aqua, T. Frisch, Phys Rev B (2010)

Graduate Student: Xian Bin Xue, and Philippe Gaillard

Si-Ge growth of FIB patterned subsrtate

Compositional and morphological coupling