

When magnetism is the driving force of order in alloys...

S. Karoui, H. Amara and F. Ducastelle (LEM, ONERA-CNRS), B. Legrand (SRMP, CEA Saclay), C. Barreteau (SPCSI, CEA Saclay)

State of the Art...

- FePd, CoRh, CoPt nanoalloys...
 - Can the size of the nanoparticle have an impact on the ordering of the nanoalloy ?
- For CoPt...
 - Is magnetism a major player in order-disorder transitions?
 - If yes, how can it be implemented in a simple inter-atomic potential ?

Magnetism and order...

1. In the case of 50:50 alloys of late transition

Goals...

- Understanding the relationship between order and magnetism:
 - Non magnetic versus magnetic calculations
 - E_{tot}(V)
 - Magnetic moment µ
 - Bulk Modulus B
 - Band structure
 - DOS
 - LDOS
- Understanding size and magnetic effects on order.
 - Fourth moment tight binding scheme with (?) magnetism.
 - Fits based on first principle results.
 - Surface/ interface effects.
 - The nanoparticle (cluster).

1. Co and Pt in the elemental bulk form **ab initio**

Ab initio conditions

- ABINIT Code
 - LDA and GGA
 - Norm Conserving Pseudopotentials (Trouiller-Martin) and PAW
- Monkhorst Pack Grid
 - 16x16x16 for Co
 - 20x20x20 for Pt
- Kinetic energy cut off:
 - Co : 16 Ha
 - Pt : 22 Ha
- Full optimization of cell geometry in structure relaxation:
 - Broyden-Fletcher-Coldberg-Shanon (BFCS)
- Cold smearing method of Marzari:
 - Pt: 0.007 Ha
 - Со: 0.010 На

PAW GGA versus LDA

- Due to the misrepresentation of the exchange correlation hole, the lattice parameter is underestimated in LDA and overestimated in GGA.

FCC	V ₀ ^{PAW} (Å)	μ ₀ ^{PAW} (μ _B)
Co (LDA)	9.93 (10.0 ¹ , <i>10.43³</i>)	1.54 (<i>1.61</i> ⁴)
Co (GGA)	10.83 (10.90 ¹ , <i>10.43</i> ³)	1.64 (<i>1.61</i> ⁴)
Pt (LDA)	14.79 (14.78 ² , <i>15.05³)</i>	0
Pt (GGA)	15.65 (15.65 ² , 15.05 ³)	0

1 Cerny et al. 2 abinit.org 3 Kittel 4 J. Crangle et al.

-Pt is better represented in LDA.

-Co is better in GGA

-Magnetism in Co is better in GGA, this is what interests us... so we choose GGA...

Bulk properties in PAW GGA

Co and Pt in elemental bulk form ...

1. Co and Pt in the elemental bulk form

LDA versus GGA

- 2. $Co_{1-x}Pt_x$ in the alloyed bulk form:
 - GGA calculations in the PAW approximation.

$Co_{1-x}Pt_x$ in the Bulk form...

Leroux et al.

50:50 alloy phases...

$Co_{1-x}Pt_x$ alloys...

• Overall tendencies...

	а	μ
Со	3.5 (3.5)	1.6
Co_3Pt	3.7 (3.7)	1.4
$CoPt - L1_0$	c = 3.7 (3.7)	1.2 (1.2)
	a = 3.8 (3.8)	
$CoPt - L1_1$	a = 3.7	1.1
	b = 3.6	
$CoPt - A_2B_2$	3.8	1.1
$CoPt_3$	3.9 (3.8)	0.7 (0.7)
Pt	3.9 (3.9)	0

L1₀ properties...

- For a ratio c/a=1, the system exhibits a continuous magnetic transition.
- A stabilization of 0.35 eV due to magnetism.

- 1. Co and Pt in the elemental bulk form ab initio
- 2. $Co_{1-x}Pt_x$ in the alloyed bulk form:
 - GGA calculations in the PAW approximation.
- 3. Construction of a simple interatomic potential

Total Energy Methods

Which method ?

- Long term goals:
 - Structure relaxation
 - Multi scale studies

Semi-Empirical Moments theorem

• A local description of the environment => LDOS

- The LDOS on the red atom depends on the:
 - 1st neighbors blue neighbors (2nd moment approximation).
 - 1st and 2nd green neighbors (4th moment and up)

Fourth moment approximation

- Works for Carbides (NiC)
 - Minimal basis set : C (s and p electrons), Ni (d electrons)
 - Moment method
 - Empirical repulsive term
 - Tight-Binding model implemented in a Monte Carlo code
 - Canonical and Grand Canonical ensembles

H. Amara, J.-M. Roussel, C. Bichara, J.-P. Gaspard and F. Ducastelle, PRB 79, 014109 (2009)

S. Karoui, H. Amara, C. Bichara and F. Ducastelle ACS Nano 4, 6114 (2010)

Nucleation of carbon nanotube from a Ni nanoparticle

Formation of graphene from a Ni slab

Fourth moment approximation

- Can this approach be transferred to transition metal alloys?
 - Are magnetic transitions correctly reproduced in band d models?
 - Is the fourth moment sufficient in order N methods?

• S-p-d: Band structure, DOS....

• Magnetism in s-p-d :

Stoner-Wolfarth Model

$$H_{ech} = \frac{I}{2}m_s \quad \begin{aligned} \epsilon_\uparrow &= \epsilon^0 - \frac{I}{2}m_s \\ \epsilon_\downarrow &= \epsilon^0 + \frac{I}{2}m_s \end{aligned}$$

	E _{shift}	μ (μ _B)
Tight Binding	1.7 eV	1.66
DFT-GGA	1.9 eV	1.64

• In d only:

- SB and DOS correctly reproduced

• Magnetism in d :

	E _{shift}	μ (μ _B)
Tight Binding	1.7 eV	1.69
DFT-GGA	1.9 eV	1.64

Conclusions and Perspectives

- Magnetism does stabilize the $Co_{1-x}Pt_x$.
 - Best results from GGA FM calculations in the PAW formalism.
- Magnetism can be correctly described by a band d tight binding scheme.

- Fourth moment tight binding model:
 - Order-disorder transitions in nanoalloys.
 - Magnetic contributions in the transition.