

Mehdi DJAFARI-ROUHANI, Alain ESTEVE, Nicolas RICHARD

GDR CoDFT 15-12-2009

Evolution of CMOS Size

e

Limit of miniaturisation & alternatives

Solution: use a gate oxide with greater permittivity than SiO₂

Part 1: Introduction, general context

>Part 2: Hikad 2, basic ingredients

- Temporal dynamics
- ≻Lattice based model
- ➢Site occupation chemistry

➤List of elementary mechanisms

➢Part 3: Exploitation, results

Simulation choice

Dielectric choice: Hafnium oxide

- High permittivity ~30 ($\epsilon_{SiO_2} = 3.9$)
- A wide band gap ~6 eV (SiO₂ = 8,9 eV)
- A large band offset with Si ~3.5 eV (Si/SiO₂ = 3,3 eV)

Deposition process: Atomic layer deposition

- Compatible with CMOS technologies
- Reliable
- Reproducible
- Efficient deposition properties control: roughness and thickness

Precursor molecules: HfCl₄ and H₂O

Occurrence time calculation

Occurrence time of event « mechanism m on (i,j,k) site» :

authorized mechanism

 $T_{i,j,k,m}$ Z random number between 0 and 1

 $-\log(Z)$

Prohibited mechanism

$$T_{i, j, k, m} = \infty$$

Occurrence probability of a mechanism m

For arrival mechanisms: Maxwell-Boltzmann statistics

$$\lambda_{1,2} = \frac{\text{Cst.P.S}}{\sqrt{M_{1,2}.T}}$$
1-precursor 2- water

For all other mechanisms: Arrhenius law

$$\lambda_m = v.\exp\left(-\frac{\varDelta E_m}{k_B T}\right)$$

Description of atomic configuration

> Occupation field = chemical nature of sites

Example: non-crystalline HfCl₃ group, bound to the substrate via one oxygen atom.

Non-crystalline aspects:

- -Non-crystalline Hf
- -Non-crystalline O
- -OH strands
- -CI strands
- -HCI contamination

 $-H_2O$

Densification mechanisms

Transition between molecular strand species to the final ionic bulk structure A mechanism involving several atoms Increase of coordination number (metal, oxygen)

Complete list of mechanisms (1)

Gas/surface reactions – activation barriers

Mechanisms link to precursor incorporation

01 MeCl₄ adsorption 02 Chemisorption of HfCl₄ on a isolated OH 03 Recombination of HCl in HfCl₃ isolated 04 Chemisorption of HfCl₄ on a OH having a OH neighbouring 05 Recombination of HCl in HfCl₃ having a OH neighbouring 06 Desorption of HCl 07 Desorption of HCl₄

Mechanisms link to hydrolysis

08 Adsorption of H_2O 09 Hydrolysis of a Cl ligand 10 Desorption de H_2O 11 Decomposition of HfCl₃ on SiO_2 on HfO_2

 0.88eV
 0.82eV

 0.62eV
 0.07eV

 0.52eV
 0.99eV

 0.38eV
 0.07eV

 0.38eV
 0.07eV

 0.48eV
 0.99eV

in the gas phase

0.916eV 0.619eV 0.530eV

Complete list of mechanisms (2)

> Densifications – activation barriers

Mechanism of layer densification

12 Recombination of HCl in HfCl₂
13 Decomposition Hf(OH)₃
14 Recombination of HCl in Hf(OH)₂
15 Dimer formation
16 Tree Densification

0.02eV 0.13eV 0.35eV 0.94eV 0.92eV

Part 1: Introduction, general contextPart 2: Hikad 2, basic ingredients

➢Part 3: Exploitation, results

Growth kinetics

Structural characterisation

Influence of processing parameters

Experimental growth conditions

10 first cycles under experimental conditions

- ➤ Temperature 300℃ and pressure 1.33 millibar
- Precursor injection phase duration 0.05s
- ➢ Water injection phase duration 0.1s
- Purge phase duration 3.5s
- Substrate 20 x 20 atoms with siloxane bridge and 52% OH according to Zhuravlev

Zhuravlev model = %OH under deposition conditions

L.T. Zhuravlev, Colloids and Surfaces A. 173, 1 (2000)

Experimental growth conditions

10 first cycles under expe

- Temperature 300°C and pre
- Precursor injection phase d
- Water injection phase durat
- Purge phase duration 3.5s
- Substrate 20 x 20 atoms wi 52% OH according to Zhura

Zhuravlev model = %OH under

> Simulated coverage compared to LEIS experimental measurements

Simulated coverage compared to LEIS experimental measurements

Simulated coverage compared to LEIS experimental measurements

Simulated coverage compared to LEIS experimental measurements

Importance of densification mechanisms

Densification mechanisms are needed to simulate the growth

Experimental observation of a slowing down of coverage rate
densification mechanisms slower than surface reactions control the growth rate

Discussion of the two growth regimes

Hafnium coordination number

Discussion of the two growth regimes

> Oxygen coordination number

Temperature 300℃ and pressure 1.33 mbar

Temperature and %OH

Simulated Hf surface density compared to TXRF experimental measurements

Conclusion

- Validation of the multi-scale strategy
- Development of a KMC simulation package for HfO₂ deposition
- Experimental validation of the implemented mechanisms
- "densification is strictly needed for the description of ALD of HfO_2 "
- Validation of the software package by comparison with experimental results: predictive nature
 - Growth rate with LEIS
 - Coordination numbers with XPS
 - Influence of growth parameters with TXRF and AFM
 - Densification-mediated surface migration

Perspectives

- Migration mechanism implementation
- Simulate thermal annealing (migrations, crystallisation...)
- Study interfacial SiO₂ re-growth, thanks to another existing kMC tool (Oxcad)
- Sensitivity to dopant migration
- Strain effect: nitrogen introduction
- Extension to multi-layer materials: HfO₂/Al₂O₃
- Extension to second generation materials: La₂O₃ ...

<u>Thank you</u>

Growth kinetics + Structural characterisation + Influence of parameters + **Densification-mediated migration**

Migration process

At the beginning of the hydrolysis phase

At the end of the hydrolysis phase

Our goals

La connaissance de chemins réactionnels permet d'aboutir à certaines caractéristiques locales. Par exemple, le faible coefficient de collage des précurseurs ZrCl₄ et HfCl₄ est clairement déduit des enthalpies de réaction et des barrières d'activation (Fig. 1). D'autres mécanismes, comme l'hydrolyse (Fig. 2), présentent des chemins réactionnels trop complexes pour aboutir à une conclusion, même locale. C'est le rôle des simulateurs Monte Carlo de prendre en charge la complexité, mais aussi d'examiner les conséquences plus globales des caractéristiques locales

<u>Hikad</u>: ALD of HfO₂, ZrO₂, Al₂O_A

Success: good description of the first regime

Limitation: saturation of the coverage and atom coordination

Hikad.2: ALD of HfO₂

Success: good description of the first and second regime efficient implementation of densification mechanism

Densification-mediated migration process

12 last millisecond of the first hydrolysis phase

Growth kinetics + Structural characterisation + Influence of parameters + **Densification-mediated migration**

Migration process

At the beginning of the hydrolysis phase

At the end of the hydrolysis phase

