Magnetic structure and superexchange pathways in CsV₂O₅

Guillaume Radtke

Institut Materiaux Microelectronique Nanoscience de Provence

Andrés Saúl

Centre Interdisciplinaire des Nanosciences de Marseille

GDR-CoDFT Atelier Multi-échelle

CsV_2O_5 : spin gap system

A material with a gap in the magnetic excitation spectra The simplest one : network of independent s=1/2 dimers

Confirmation : the magnetic susceptibility ...

J. Mur and J. Darriet C. R. Acad. Sc. Paris 300 (1985) 599

M. Isobe and Y. Ueda J. Phys. Soc. Jap. 65 (1996) 3142

Interpretation

Isolated dimers : J = 156 K Isolated dimers : J = 146 K

3) CsV_2O_5

Structural dimers formed by V⁴⁺ : [Ar] 3d¹

A short history of CsV_2O_5 (part 2)

R. Valenti and T. Saha-Dasgupta Phys. Rev. B. 65 (2002) 144445 Tight-Binding fit $(t_1 = 0.117, t_3=0.097eV)$ suggests an alternating Heisenberg chain

(i) First suggestion of the existence of other magnetic interactions (ii) Mostly 1D chains : J_1 (intra-dimer) > J_3 (inter-dimer) (iii) Also non negligible inter-chain interaction (2D structure)

GDR-CoDFT Atelier Multi-échelle

Estimation of J's by DFT total energy differences Mapping procedure with the Heisenberg Hamiltonian Hybrid functional for strongly correlated electrons

Analysis of the results

New superexchange pathways Re-interpretation of the band structure

Conclusion

Who are the dimers...

Magnetic interactions in CsV₂O₅

$$\hat{H} = \hat{H}_0 + \sum_{i>j} J_{ij} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j$$

Analysis of the magnetic couplings up to the fourth nearest neigbours

Interatomic distances :

Simplified J₄ interaction:

 $J_4 = (J'_4 + J''_4)/2$

Mapping of DFT energies : single dimer

A system formed by a single spin-1/2 dimer

Magnetic excitations written as a Heisenberg Hamiltonian $H = E_0 + J \mathbf{S}_i \mathbf{S}_j$

Spin contaminated nature of the AFM solution (not an eigenstate of S²)

Heisenberg Hamiltonian for a general system

$$\hat{H} = \hat{H}_0 + \sum_{i>j} J_{ij} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j$$

Defining a DFT (collinear spin arrangement) state

A Kohn-Sham state (determinant) with a given projection of the spin in atom *i*

$$\hat{S}_{iz}|\alpha\rangle = \pm \frac{1}{2}|\alpha\rangle$$

The mean value of the Hamiltonian (the DFT total energy) :

$$\epsilon_{\alpha} = \langle \alpha | \hat{H} | \alpha \rangle = \epsilon_0 + \sum_{i>j} \frac{J_{ij}}{4} \sigma_i \sigma_j \qquad \qquad \sigma_i = \pm 1$$

can be written as an Ising Hamiltonian with the same J's

Mapping of DFT energies: calculation details

$$\epsilon_{\alpha} = \langle \alpha | \hat{H} | \alpha \rangle = \epsilon_0 + \sum_{i>j} \frac{J_{ij}}{4} \sigma_i \sigma_j = \epsilon_{\alpha} = \epsilon_0 + \sum_{i=1}^4 a_{i\alpha} J_i$$

Total energies with wien2k : all electron, full potential, LAPW+lo implementation of Density Functional Theory

The subspace spanned by the strongly correlated (V-3d) electrons are treated with the PBE0 hybrid functional:

$$E_{xc}^{\text{PBE0}}[\rho] = E_{xc}^{\text{PBE}}[\rho] + \frac{1}{4}(E_x^{\text{HF}}[\Psi_{\text{sel}}] - E_x^{\text{PBE}}[\rho_{\text{sel}}])$$

- 64 atoms supercells
 - 8 vanadium atoms (spins)

- 256 configurations in total
 - 28 inequivalent by symmetry

Mapping of DFT energies: fitting procedure

GDR-CoDFT Atelier Multi-échelle

Ex. Int. (K)	J ₁	J ₂	J ₃	J ₄
PBE0	89	-23	188	-3
PBE	180	-54	378	-11

- Dominant AF interactions along the chain
- Third nearest- neighbor $J_3 > J_1$
- Small and ferromagnetic inter-chain interaction
- A semi-local functional GGA increases the amplitudes by ~ 2 with respect to the exact exchange one

Interplane coupling ?

64-atom supercells (doubled perpendicularly to the planes yz)

 $\mathsf{E}_{\mathsf{FM}} - \mathsf{E}_{\mathsf{AFM}} \approx 0$

• No interaction between the planes

Why is the inter-dimer interaction bigger than the intra-dimer one

Electron density associated to the $V^{4+}-d_{y^2-z^2}$ majority bands

Proposed superexchange paths

Revisiting the band structure : tight-binding fit

Effective hopping integrals between magnetic ions :

Ambiguity with the TB model Unitary transformation U exists such that :

 $U^{-1} H(t_1,t_2,t_3,t_4) U = H(t_3,t_2,t_1,t_4)$

The dimers are not the structural ones...

• A new picture of the magnetic interactions in CsV₂O₅

The sole consideration of topology is misleading to understand the magnetic interactions of low dimensional magnetic oxides :

- Non magnetic bridging units have to be considered in the design of new systems
- Another example $(VO)_2P_2O_7$: super-exchange path through PO₄ units

LDA (GGA) over-estimates the exchange interactions

- Certainly due to an over-delocalization of the correlated electrons
- Needs Hybrid functionals, LSDA+U, ...