

Un nouveau modèle à charges variables en liaisons fortes pour les simulations atomiques des surfaces, interfaces et défauts dans les oxydes

Laboratoire d'Étude des Matériaux Hors Équilibre **Robert TÉTOT** Abdelmalek HALLIL Emilie AMZALLAG Sylvain LANDRON

Institut de Chimie Moléculaire et des matériaux d'Orsay

Nécessité d'un nouveau modèle

Les modèles classiques purement ioniques à charges ponctuelles (formelles ou partielles) sont inadaptés :

- La cohésion est purement coulombienne et beaucoup trop forte d'où la nécessité de compenser par une forte répulsion à courte portée. Conduit à l'incapacité de rendre compte en même temps du paramètre cristallin et de l'énergie de cohésion (toujours trop faible, en val. abs.)

 \rightarrow De nombreux exemples : SrO, TiO₂, In₂O₃

- Ne permettent pas de traiter les situations hétérogènes

➡ Les modèles à charges variables (QEq) existants sont instables par rapport aux charges, particulièrement pour les oxydes très ioniques (SrO, Al₂O₃) :

- L'énergie iono-covalente métal-oxygène est découplée en une partie ionique (QEq) et une partie covalente (Morse, EAM, SM...)

Modèles à charges variables (QEq)

⇒ QEq : Formalisme d'Equilibre de Charge (Rappé, Goddard, 1991)

Minimisation de l'énergie électrostatique par rapport aux charges ioniques

➡ Interactions à courte portée :

> Morse, EAM, SM....

Exemple simple : SrO

Energie d'ionisation

LEMHE/ICMMO CNRS-Univ Paris-Sud 11 Orsay-France

Interaction de Coulomb J_{AB}

Interaction de Coulomb J_{AB}

> Les ions sont décrits par des orbitales ns de Slater :

> Fort écrantage des forces de Coulomb à faibles distances : $R_{ii} < 4$ Å

> Loi de Coulomb classique (1/R) à plus grandes distances

QEq : Calcul de la charge

Tous les anions (cations) ont la même charge et la même coordinance. La dérivée de :

$$E(Q_1...Q_N) = \sum_{A=1}^{N} \left(E_{A^0} + \chi_A^0 Q_A + \frac{1}{2} J_{AA}^0 Q_A^2 \right) + \frac{1}{2} \sum_{A \neq B}^{N} Q_A Q_B J_{AB}$$

par rapport aux charges conduit à l'égalité des 2 potentiels chimiques χ_{Sr} et χ_{O} :

$$\chi_{Sr} = \chi_{Sr}^{0} + \sum_{Sr} J_{SrSr} Q_{Sr} + \sum_{O} J_{SrO} Q_{O} = \chi_{O} = \chi_{O}^{0} + \sum_{Sr} J_{OSr} Q_{Sr} + \sum_{O} J_{OO} Q_{O}$$

Avec la condition de neutralité électrique : $Q_{Sr} = -Q_O = Q$ et en regroupant les termes d'intéractions :

$$J^{C} = (J^{C}_{SrO} - J^{C}_{OO}) - (J^{C}_{SrSr} - J^{C}_{OSr}) \qquad J^{C}_{AX} = \sum_{X} J_{AX}$$

On obtient :
$$Q = \frac{\left(\chi_{Sr}^{0} - \chi_{O}^{0}\right)}{J^{C}}$$
$$J^{C}$$
$$J^{C}$$
$$J^{C}$$
 dépend : - du paramètre de maille
- des rayons effectifs $R_{eff}(i)$

SrO : limite ionique (Q (2)

- Rajouter de la covalence avec Q=2 est contradictoire

- On ne trouve aucune solution (pour *a* et E_{coh}) avec $Q \cong 2$, plus un terme covalent

Conclusion : on ne peut pas décrire SrO avec un modèle purement ionique, ni avec un modèle QEq classique

Modèle SMTB-Q QEq + Modèle du Réseau Alterné

Modèle du Réseau Alterné (Noguera, Goniakowski 1994)

L'énergie covalente M-O est calculée en Liaisons Fortes au Second Moment (SMTB). Elle dépend de la charge et entre donc dans la minimisation QEq.

Hypothèses du RA

Modèle de bandes valide

➢ Les orbitales atomiques de l'oxygène (resp. cations) ont la même énergie (E_o et E_C respectivement) ⇒ crystal-field splitting est négligé

Le transfert électronique n'est permis qu'entre oxygènes et cations 1^{ers} voisins ature alternée du réseau

> Approximation au second moment des liaisons fortes

On calcule : - la densité d'état totale N(E)- les DOS locales $N_A(E)$ et $N_C(E)$

RA : énergie covalente

> L'intégration de $N_A(E)$ sur la bande de valence donne le nombre d'électrons portés par les anions et la charge :

$$Q^{RA} = 2 - \frac{n_0}{m} \left(1 - \frac{E_c - E_o}{\sqrt{(E_c - E_o)^2 + 4Z_o \beta^2}} \right)$$

 \succ L'énergie covalente est obtenue par l'intégration de *EN(E)* sur la bande de valence

$$E_{C_{OV}}^{RA} = -4n_0 \left(\frac{Z_O \beta^2}{\sqrt{(E_C - E_O)^2 + 4Z_O \beta^2}} \right)$$

$$E_{Cov}^{RA} = -2m|\beta|\sqrt{Z_o}\sqrt{\delta Q\left(2\frac{n_0}{m} - \delta Q\right)}$$

 $\begin{cases} \delta Q = 2 - Q^{RA} \\ m = nbre \ d'oxygènes \ par \ formule \ chimique \\ n_0 : nbre \ d'états \ électroniques \ couplés \end{cases}$

SMTB-Q : Calcul de la charge

$$E(Q_{1}...Q_{N}) = \sum_{A=1}^{N} \left(E_{A^{0}} + \chi_{A}^{0} Q_{A} + \frac{1}{2} J_{AA}^{0} Q_{A}^{2} \right) + \frac{1}{2} \sum_{A\neq B}^{N} Q_{A} Q_{B} J_{AB} + E_{Cov}^{RA} (Q_{i})$$

$$(\chi_{Sr}^{0} - \chi_{O}^{0}) = J^{C} Q \quad (QEq) \quad \Longrightarrow \quad \left(\chi_{Sr}^{0} - \chi_{O}^{0} \right) = J^{C} Q - \beta \sqrt{Z_{O}} \frac{(Q-1)}{\sqrt{Q(Q-1)}} (QEq+RA)$$

- La charge est bornée à 2, même dans la limite ionique ($\beta \rightarrow 0$)
- On rend compte parfaitement des propriétés de SrO

LEMHE/ICMMO CNRS-Univ Paris-Sud 11 Orsay-France

Transférabilité du modèle SMTB-Q

SrTiO₃

SrTiO₃

SrO (ajusté)		TiO2 (ajusté)
a : 5,16 Å (5,16) $E_{coh} : -10,4 \text{ eV} (-10,4)$ B : 90,7 GPa (90,6) $C_{11} : 180,3 \text{ GPa} (183)$ $C_{12} : 45,8 \text{ GPa} (47)$ $C_{44} : 58,3 \text{ GPa} (58)$ Q : 1.885 (1.83)	+	a :4,593 Å(4,594) c :2,959 Å(2.959) u :0,3052(0,3053) E_{coh} :-10,60 eV(-10,60) B :213 GPa(211) C_{11} :295 GPa(268) C_{u} :400 GPa(484)
<u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>	SrTiO ₃ (sans ajustement) a : $3,923$ Å $(3,903)$ E_{coh} : $-31,9$ eV $(-31,7)$ B :198 GPa (183) C_{11} : 328 GPa (334) C_{12} : 132 GPa (105) C_{44} :103 GPa (127) Q : $1,73$ $(1,45)$ Q_{Ti} : $3,25$ $(2,49)$ Q_{Sr} : $1,94$ $(1,86)$	$C_{33} : 400 \text{ GFa} (484)$ $C_{12} : 165 \text{ GPa} (175)$ $C_{23} : 150 \text{ GPa} (147)$ $C_{44} : 117 \text{ GPa} (124)$ $C_{66} : 216 \text{ GPa} (190)$ $Q : 1,295 (1,202)$

Résultats surfaces TiO₂ (rutile)

Energies : (110), (100), (001)

E _S (J. m ⁻²)	SMTB-Q	ab initio (GGA)	ab initio (B3LYP)	ab initio (1)
E ₍₁₁₀₎	0.42	0.48	0.494	0.54
E ₍₁₀₀₎	0.49	0.68		
E ₍₀₀₁₎	1.26	1.36		

(1) Thompson <i>et al.</i> (2006) : VASP GGA PW	
---	--

C'est la 1^{ere} fois que les énergies de surfaces de TiO₂ calculées avec des potentiels interatomiques sont en bon accord avec des calculs *ab initio*.

Relaxations atomiques : (110), (100)

(110)	Ехр (2005)	ab initio	SMTB-Q
O(1)	0.10±0.05	0.13	0.03
Ti(2)	0.25±0.03	0.35	0.11
O(3,5)	0.27±0.08	0.26	0.17
Ti(4)	-0.19 <u>+</u> 0.03	-0.11	-0.16
O(6)	0.06±0.10	0.13	0.08
O(7)	0.00±0.08	0.05	-0.06
Ti(8)	0.14±0.05	0.27	0.04
O(9,11)	0.06±0.12	0.08	0.03
Ti(10)	-0.0 9± 0.07	-0.08	-0.05
O(12)	0.00±0.17	0.05	-0.04

(100)	ab initio		SMTB-Q		
	<010>	<100>	<010>	<100>	
O (1)	-0.33	0.05	-0.41	0.10	
Ti (2)	0.10	-0.15	0.04	-0.12	
O (3)	-0.12	0.05	-0.07	0.05	
O (4)	-0.05	0.09	0.04	0.00	

Q-Qbulk	SMTB-Q	ab initio*
O(1)	0.25	0.18 (0.17)
Ti(2)	-0.05	-0.04 (-0.05)
O(3,5)	-0.06	-0.025 (-0.025)
Ti(4)	-0.09	-0.055 (-0.04)
Qbulk	-1.016	-1.114

Q-Qbulk	SMTB-Q	ab initio*
O(1)	0.18	0.14
Ti(2)	-0.11	-0.09
O(3)	-0.06	-0.02
O(4)	-0.07	-0.01

* Charges de Mulliken : GGA (B3LYP)

Lacunes d'oxygène à la surface TiO₂ (110)

Energetics

 Relaxations atomiques très fortes au voisinage d'une lacune de surface: exemple O₃

(1) Oviedo *et al.* (2004): VASP (GGA)

Conclusions et perspectives

Le modèle SMTB-Q permet de décrire les propriétés de volume, de surface et les défauts dans les oxydes isolants* (SrO, TiO₂, ZrO₂, Al₂O₃, Gd₂O₃, In₂O₃, SrTiO₃). Les résultats sont en bon accord avec les calculs *ab initio*, avec un gain de temps calcul considérable. Etudes en température.

*PRB 73 (2006), Europhys. Lett. 83 (2008), Surf. Science 2010, à paraitre

Le modèle SMTB-Q est basé sur les 2 points suivants :

> La minimisation QEq qui permet aux charges ioniques de s'adapter à leur environnement

> La description de la liaison iono-covalente M-O en liaison forte, selon le modèle du réseau alterné

Perspectives:

Etendre le modèle aux oxydes non-isolants et non-stoichiométriques Interfaces métal/oxydes (oxydation de l'aluminium) VO2^{mm}

Merci de votre attention

• Barrière énergétique entre les sites A et B

Universalité du modèle SMB-AQ

Étude des 3 phases de la zircone, à pression ordinaire : monoclinique, quadratique et cubique

- \Rightarrow Universalité : Même potentiel caractérisant le couple O-O que dans TiO₂
- \Rightarrow Stabilité relative des 3 phases à P = 0 (M \rightarrow Q \rightarrow C qd T augmente)
- \Rightarrow Première étude sur la zircone avec un modèle à charges variables

Monoclinique ($Z_{zr}=7$)

Cubique ($Z_{Zr} = 8$)

Quadratique ($\langle Z_{Zr} \rangle = 8$)

Universalité du modèle SMB-ΔQ

• Ajustement des potentiels sur la structure quadratique

> Structure cubique \Rightarrow cas particulier de la structure quadratique

• Propriétés de volume des polymorphes de la zircone (transférabilité)

Les propriétés du réseau
Paramètres de structure et constantes
élastiques sont bien reproduits

$$Q_{Zr}^{M} > Q_{Zr}^{T} > Q_{Zr}^{C} \implies Q$$
 baisse pour les structures de haute symétrie

L'énergie de cohésion E_{Coh} = -23,3 eV/ZrO₂ [-23]

(~-20 eV avec le modèle SMB-Q)

Universalité du modèle SMB-ΔQ

E (*rutile*) < *E* (*monoclinique*) < *E* (*quadratique*) < *E* (*cubique*)

Existence d'une phase parasite rutile ($Z_{Zr}=6$) plus stable que la phase monoclinique Pour la déstabiliser : considérer la variation du rayon effectif de la distribution de charge de l'oxygène en fonction de la coordinence.

 $R_{eff}(O) = ?$ > Augmente si la coordinence baisse

Universality of the SMTB-Q model Polymorphs of ZrO₂ (monoclinic, tetragonal, cubic)

E (monoclinique) < E (quadratique) < E (cubique)

Parasite rutile phase: role of the effective radius of oxygen in Slater orbital

Transferability of the SMTB-Q model

I- Natural polymorphs of TiO₂ (anatase and brookite) without any additional fitting

(Å)	anatase			brookite				
	а	С	δz	B (GPa)	а	b	С	B (GPa)
exp	3,785	9,514	0,2081	190	9,174	5,449	5,138	255
SMTB-Q	3,822	9,296	0,2102	203,9	9,224	5,437	5,110	237,7

In accordance with experimental data And recent ab initio calculations

E (anatase) < *E* (rutile) < *E* (brookite)

Total M-O interaction

Covalent part:

Ionic limit: $Z_O \beta^2 << (E_C - E_O)^2$ $E_{cov} = -2m |\beta| \sqrt{Z_O} \sqrt{\delta Q \left(2\frac{n_0}{m} - \delta Q\right)} = -\xi \sqrt{Z_O} \sqrt{\Delta Q}$ All neighbours $\left[\xi^2 \exp\left[-2q \left(\frac{r_{ij}}{r_0} - 1\right)\right]\right]^{1/2}$

 n_0/m is the number of electronic states between oxygen and cationic sublattices per oxygen atom (=5/2 for TiO₂)

 $\delta Q = (2 - Q_0)$ is the charge reduction on oxygens due to covalent effects (if the bond is purely ionic : $\delta Q = 0$)

Repulsive part:
$$\sum_{j} A \exp\left[-p\left(\frac{r_{ij}}{r_0}-1\right)\right]$$
 (Born-Mayer)

Transferability of the SMTB-Q model: bulk properties of anatase and brookite

> Without any additional fittings

	anatase			brookite				
	а	С	δz	В	а	b	С	В
exp	3.785	9.514	0.2081	190	9.174	5.449	5.138	255
SMTB-Q	3.822	9.296	0.2102	203.9	9.224	5.437	5.110	237.7

 $\delta \max : 2,3\% \ \boldsymbol{c} \text{ (anatase)} \approx 7\% \text{ for } \boldsymbol{B}$

Marseille, décembre 2010

LEMHE/ICMMO CNRS-Univ. Paris-Sud 11 Orsay-France

Realistic energetic model for oxide based heterogeneous systems

Aim: Performing large-scale atomistic simulations of oxide surfaces as well as interfaces between oxides and other materials

Different geometrical environments (bulk, surface, defects)

Marseille, décembre 2010

Oxygen vacancies on TiO₂ (110) surface

Strong atomic relaxations around surface vacancies: example O₃

Energetics

(eV)	$E_V(\mathbf{O_1})$	$E_V(\mathbf{O}_3)$	$E_V(O_6)$	$E_V(O_7)$	$E_V(\mathbf{O}_9)$	<i>E_V</i> (bulk)
ab initio (1)	5.5 ± 0.7	7.5 ± 0.3	6.0 ± 0.3	7.9 ± 0.1	7.1 ± 0.4	7.5
SMTB-Q	6.60	6.95	7.05	8.35	7.40	7.2

(1) Oviedo et al. (2004): VASP (GGA)

Atomic relaxations on (001) surface

(001)	Ab initio (PW-LDA)				SMTB-Q		
	<010>	<100>	<001>	<010>	<100>	<001>	
Ti (1)	0.00	0.00	-0.32	-0.02	0.00	-0.26	
O (2)	-0.10	-0.10	0.03	-0.11	-0.09	0.01	
O (3)	0.10	0.10	0.03	0.08	0.09	0.01	
Ti (4)	0.00	0.00	0.32	-0.02	0.00	0.10	
O (5)	-0.04	0.04	-0.04	-0.05	0.04	-0.06	
O (6)	0.04	-0.04	-0.04	0.03	-0.04	-0.06	
Ti (7)	0.00	0.00	-0.21	0.00	0.00	-0.03	
O (8)	-0.03	-0.03	0.03	-0.01	0.00	0.01	
O (9)	0.03	0.03	0.03	0.00	0.01	0.01	

Total M-O energy

Covalent part:

$$E_{Cov}^{ALM} = -2m|\beta|\sqrt{Z_o}\sqrt{\delta Q \left(2\frac{n_0}{m} - \delta Q\right)}$$

 n_0/m is the number of electronic states shared by oxygen and cationic sublattices per oxygen atom (=5/2 for TiO₂)

 $\delta Q = (2-|Q_0|)$ is the charge reduction on oxygen atoms due to covalent effects (if the bond is purely ionic : $\delta Q = 0$ and $E_{Cov}^{ALM} = 0$)

Repulsive part:
$$\sum_{j} A \exp\left[-p\left(\frac{r_{ij}}{r_0}-1\right)\right]$$
 (Born-Mayer)

M-O covalent energy

- > Hypothesis of the Alternating Lattice Model (ALM):
 - The outer atomic orbitals of oxygens (p), on the one hand, and of the cations (d), on the other hand, have the same energy (E_0 and E_M respectively) \Rightarrow crystal-field splitting is neglected.
 - Alternating nature of the lattice

 \Rightarrow electron transfer takes place only between oxygens and cations.

Second Moment approximation of the Tight-Binding scheme For an oxide M_nO_m:

$$Q_{O}^{ALM} = 2 - \frac{n_{0}}{m} \left(1 - \frac{E_{M} - E_{O}}{\sqrt{(E_{M} - E_{O})^{2} + 4Z_{O}\beta^{2}}} \right) \qquad \underbrace{E_{M}}_{E_{M}} \qquad \underbrace{E_{AL}}_{E_{O}} \qquad \underbrace{E_{AL}}_{E_{O}} \qquad \underbrace{E_{O}}_{E_{O}} \qquad \underbrace{E_{O}}_{E_{O}} \qquad \underbrace{E_{O}}_{E_{L}} \qquad \underbrace{E_{O}}_{E_{C}} \qquad \underbrace{E_{O}} \qquad \underbrace{E_{O}}_{E_{C}} \qquad \underbrace{E_{O}}_{E_{C}} \qquad \underbrace{E_{O}}_{E_{C}} \qquad \underbrace{E_{O}}_{E_{C}} \qquad \underbrace{E_{O}} \qquad \underbrace{E_{O}} \qquad \underbrace{E_{O}} \qquad \underbrace{E_{O}} \qquad \underbrace{E_{O}}$$

Marseille, décembre 2010

LEMHE/ICMMO CNRS-Univ. Paris-Sud 11 Orsay-France

 \mathbf{T}

Results on TiO₂ rutile

> Simple non correlated insulating oxides

Schematic band diagram (from Goodenough)

Band description valid

 $(Z_rO_2, Al_2O_3, MgO, SrTiO_3...)$

Essentially:

- A full covalent band of almost pure oxygen character (2s and 2p bands)
 An empty conduction band of almost pure Ti character (3d bands)
- The Ti-O bond has a iono-covalent character → electron delocalization

Marseille, décembre 2010

Results on TiO₂ rutile

> Simple non correlated insulating oxides

Band description valid

 $(Z_rO_2, Al_2O_3, MgO, SrTiO_3...)$

Essentially:

- A full covalent band of **almost** pure oxygen character (2s and 2p bands)
- An empty conduction band of **almost** pure Ti character (*3d* bands)
- The Ti-O bond has a iono-covalent character \rightarrow electron delocalization

Band structure of TiO₂ (CRYSTAL06) Tétot et al. (2010)

Parameters of the SMTB-Q model (Second-Moment Tight-Binding + QEq)

- \succ Parameters are fitted on bulk properties of TiO₂ rutile:
- lattice parameters
- cohesive energy
- elastic constants
- bulk modulus

а,	c (Å)	$-C_{ij}$ and	B (GPa)	$) - E_{coh} (eV)$. ,
----	---------------	---------------	---------	--------------------	-----

	а	С	u	E _{Coh}	C ₁₁	C ₃₃	C ₁₂	C ₂₃	C ₆₆	C ₄₄	В
Cal c	4.594	2.95 8	0.3031	-19.9	290	399	178	160	167	118	219
Exp	4.594	2.95 9	0.3048	-19.9	268	484	175	147	190	124	211

The transferability of the model has been checked successfully on bulk properties of Anatase and Brookite without any additional fitting.

Ab initio computational details

- *ab initio* periodic CRYSTAL06 code (Dovesi *et al.,* Turin 2006):
 - Using an all-electron LCAO approach

> Method:

Hamiltonians : GGA or B3LYP

basis set: 86-411(d31)G for Ti and 8-411(d1)G for O

- **Bulk:**
 - 75 k-points in 1st BZ
- Slabs:
 - 14 Ti-layers for the rutile (100) and (110) with 25 k-points in 1st BZ
 - 21 Ti-layers for rutile (001) with 15 k-points in 1st BZ

Adatoms: Ti/TiO₂(110)

2 stable adsorption sites

Site A

2 bonds with bridging oxygens 1 bond with in-plane oxygen

1 bond with bridging oxygen 2 bond with in-plane oxygen

