Modèle de liaisons fortes au 4ème moment pour traiter l'ordre-désordre dans les alliages

> Jan Los, Christine Mottet, Guy Tréglia *CINaM, Marseille* Christine Goyhenex *IPCMS, Strasbourg*

Context

Tight Binding, moment method, SMA, FMA

- Fourth Moment Appoximation (FMA) ? What is that ?

Bulk mixing properties

- trends in the mixing excess energy from calculations for a perfect lattice
- role of diagonal and off-diagonal disorder

Surface segregation properties

- some results from a lattice approach within a slab geometry

Parametrisation of the TBFMA potential

- limitations of a pure d-band description for the late TMs

Simulations based on a pure d-band TBFMA model

- illustration of the impact of the d-band filling on the segregation behaviour

Conclusions, perspectives

<u>Goal</u>: accurate determination of the phase behaviour of nano-clusters of

(late) transition metal (TM) alloys: how does it change w.r.t. bulk phase behaviour ?

What the critical temperature T_c ? How does it change w.r.t. the bulk value?

Transition metal alloys

ii ,	re	2	4		5		6			7		0		0		10	•		44		10		L. as
7	55	3	4		5		0			1		0		4		_				1	12	w	öhle
	2	21 Sc 3	22 Ti	3,4 23	3 V	2-5 2	4 Cr	2,3,6	25	Mn 2-4,6	7 26	Fe 2,3	27	Co	2,3 2	8 Ni	2,3	29	Cu	2 30) Zn	2 3	1
		Scandium	Titane		Vanadium		Chrom	e	Ma	anganèse		Fer		Cobalt		Nick	el		Cuivre		Zinc		G
		44,955910	47,867		50,9415		51,9961		5	4,938050		55,845		58,933200		58,69	34		63,546		65,40		
	-	Ar 3 d ' 4 s *	Ar 3 d 4 s 4		Ar 3 d 3 4 s 4		Ar 3 d° 4 :	s'	A	r 3 d° 4 s *		Ar 3 d° 4 s ²		Ar 3 d' 4 s'		Ar 3 d°	4 s*	Ar	3 d'*4 s'		Ar 3 d '4 s *		Ar 3 0
	55	1541 2830 2,989	1668 3287 4	507 191	0 3407 6	5,11 19	07 2671	7,19	1246	2061 7,4	3 1538	2861 7,874	495	5 2927	8,90 14	53 2913	3 8,902	1084,6	2 2562 8,	6 419	,53 907 7.	,14 29	,76
		L. Scandia, Scandinavie	L.Titans,premiers du Ciel et de la Tr	fils Vi rre	scandinave	e	Gr. chrom couleur	ia,		magnes, aimant		L. terrum		Al. Kobold, lutin		faux cu	inickel, livre	ile	de Chypre	d	Al. Zink, origine obscur	e	L. Ga
в	08	Nilson 1879	Gregor 1	791 del	Rio 18	801 Va	auquelin	1797	Gahn	177	4	Préhistoire	Bra	ndt	1735 Cr	nstedt	1751		Préhistoi	e Ma	rggraf 17	46 B	oisba
	2	39 Y 3	40 Zr	44	Nb	3.5 4	2 Mo	2-6	43	Tc	7 44	Ru 2-4,6,8	45	Rh	2-4 4	i Po	2.4	47	Aq	1 48	3 Cd	2 4	9
		Yttrium	Zirconium		Niobium		Molybdè	ne	Те	chnétium	R	uthénium		Rhodium	1	Pallad	lium		Argent		Cadmium		1
		88,905848	91,224		92,906378		95,93		(96,9064)		101,07		102,90550	4	106,4	42	1	07,8682		112,41		1
		Kr 4 d ¹ 5 s ²	Kr 4 d ² 5 s ²		Kr 4 d ⁴ 5 s ¹		Kr 4 d ⁵ 5	s ¹	к	r4d ⁵ 5s ²	- 8	Kr 4 d ⁷ 5 s ¹		Kr 4 d ⁸ 5 s		Kr4d	1 ¹⁰	Kr	4 d ¹⁰ 5 s ¹		Kr 4 d ¹⁰ 5 s ²	1	Kr4 d
2,	54	1526 3336 4,469	1852 4409 6	506 246	8 4744 8	3,57 26	17 4639	10,22	2157	4265 §11	5 2334	4150 12,41	1 1964	3695	12,41 15	1,9 296	53 12,02	961,78	2162 10,	0 321	,07 767 8	,65 15	6,60
		Ytterby,	Ar. zargun,		Gr. Niobe,		Gr. molybd	los,	Gr	technetos,	- 10	L. Ruthenia, Russie	1 70	Gr. rhodon	, G	Astéroïo	de Pallas	L.	argentum	Gr.	kadmeia,calamir arbonate de zin	ne, de	e sa li de co
	90	Gadolin 1794	Klaproth 1	789 Hat	chett 18	801 50	cheele	1778	Perrie	ar 193	7 Klau	s 1844	Wol	laston	1803 W	laston	1803		Antiqui	é Str	omever 18	17 B	eich.
-		57 la	72 Hf	7	Ta	7	4 W		75	Re	76	05	77	/ Ir	7		1.000	79	Διι	8) Ha	. 8	1
	2	Lanthane ¶	Hafnium		Tantale	5	Tunastè	2-6 ne	1° R	thénium	" !' "	Osmium		Iridium	2-6	Plati	ne 2,4	1.2	Or	3	Mercure	1,2	Т
		138,9054	178,486		180,9479		183.842	2		186,207		190,24		192,216		195,0	80	19	6,966552		200,60		2
		Xe 5 d ¹ 6 s ²	Xe 4 f ¹⁴ 5 d ² 6	2 X	e 4 f ¹⁴ 5 d ³ 6 s	2	Xe 4 f ¹⁴ 5 d ⁴	6 s ²	Xe 4	f ¹⁴ 5 d ⁵ 6 s ²	Xe	4 f ¹⁴ 5 d ⁶ 6 s ²	Xe	4 f ¹⁴ 5 d ⁷ 6	s ²	4114 5	d ⁹ 6 s ¹	Xe 4	f ¹⁴ 5 d ¹⁰ 6 s	x	e41 ¹⁴ 5d ¹⁰ 6s	2 X	e 4 f ¹⁴
3,	51	920 3455 6,146	2233 4603 1	3,31 301	7 5458 16,	654 34	22 5555	19,3	3180	§5650 21,0	2 3033	5012 22,57	7 2446	6 4428	22,64 17	2 382	5 21,45	1064,1	8 2856 19,	2 -38	83 356,73 13,5	546 30)4
		Gr. lanthanein,	L. Hafnia,	Gr.1	analos;L.Tanta	alus Al	.Wolfram ; S	u.tung	L	Rhenus,		Gr. osme,		L. iris,		Es. plat	tino,	1	aurum,		lanète Mercure	G	ir. tha
		etre cache	Copennague		pere de Niobe	S	iten , pierre i	ourde	Made	Hnin aak 100	Tank	odeur 190/	Ton	arc-en-ciei	1004	peut ar	gent		aurore		Antiput		bou
	08	OO Ao	104 Df	923 EK		1		1/83	107	7 Ph	10		10	NO M+	1804 0		1/35		Prenisto	-1	10 +	nte Ci	OOK
	2	OF AC 3					00 30		10/	DII	10	0 115	110			10 +			1		12 +		
			_														_					J	
																	•						
					1					have for													
Trend		ncp			DCC					IICP,ICC													
	31	/								1 ′													
	•	demiving			ordering					demiving													
		U uumining			ordering							uchinning											
		-			-																		

Exceptions: e.g. CoPt shows ordered phases experimentally

To determine the phase behaviour for 'nano'-cluster alloys we want to do <u>Semi-grand Canonical Monte Carlo simulations</u>, including two types of events: ----> atomic displacements for geometrical relaxation and equilibration ----> change of chemical identity of a particle for given chemical potential

very time consuming simulations !!

Wanted:

$$E({\mathbf{r}}) = E(\mathbf{r}_1, \mathbf{r}_2, \mathbf{r}_3, \dots, \mathbf{r}_N) \quad \Rightarrow \quad \mathbf{F}_i = -\frac{dE}{d\mathbf{r}_i}$$

Expression should be:

- > 'sufficiently' accurate
- > computationally fast
- > linear scaling, i.e. computation time ~ N (number of atoms)

Methods

Empirical Potentials

Advantages:

- simple, fast
- linear scaling

Disadvantages:

- transferability
- no electronic structure
- physical grounds

Examples:

Embedded Atom Methods Bond Order Potentials

Stillinger and Weber

Tight Binding (TB) Models

Advantages:

- electronic structure
- improved accuracy
- faster then ab-initio

Disadvantages:

- no self-consistency
- bad scaling (N^3)

Ab-initio Models

Advantages:

- electronic structure
- reliable (!?)

Disadvantages:

- complexity
- slow
- bad scaling

Allows for systematic approximations with: - limited loss of accuracy

- linear scaling (!!!)

via the so-called moment methods:

- second moment approximation (SMA)
- fourth moment approximation (FMA)
-etc

Tight Binding

Total energy:

$$E = E_{rep} + E_{band} = \frac{1}{2} \sum_{i=1}^{N_{at}} \sum_{j} V(r_{ij}) + \int_{-\infty}^{E_F} (E - \epsilon)n(E) dE$$
Density of states:

$$n(E) = \sum_{\lambda} \delta(E - E_{\lambda}) = \sum_{\epsilon} \langle \psi_{\epsilon} | \delta(E - H_{TB}) | \psi_{\epsilon} \rangle$$
Tight binding hamiltonian matrix:

$$IH_{TB}]_{ij}^{\alpha\beta} = \langle \psi_{i\alpha} | T + V_{eff} | \psi_{j\beta} \rangle = \langle \psi_{i\alpha} | T + \sum_{i'} V_{i'}^{at} | \psi_{j\beta} \rangle$$

$$\simeq \epsilon_{i\alpha} \delta_{ij} \delta_{\alpha\beta} + \langle \psi_{i\alpha} | V_i^{at} | \psi_{j\beta} \rangle = \epsilon_{i\alpha} \delta_{ij} \delta_{\alpha\beta} + \beta_{ij}^{\alpha\beta}$$
Wave function linear combination of atomic orbital:

$$\psi(\mathbf{r}) = \sum_{i=1}^{N_{at}} \sum_{\alpha} c_{i\alpha} \psi_{i\alpha}(\mathbf{r}) = \sum_{i=1}^{N_{at}} \sum_{n,l,m} c_i^{nlm} R_{nl} (|\mathbf{r} - \mathbf{r}_i|) Y_{lm}(\theta, \phi)$$

Tight Binding hamiltonian matrix blocks for spd-basis set:

$$\vec{\vec{H}}_{TB,ij} = \vec{\vec{\epsilon}}_{ij}\delta_{ij} + \vec{\vec{\beta}}_{ij}$$

diagonal matrix block;

 ε_{λ} =free atom orbital level (λ =s,p,d)

off-diagonal matrix block for r_{ij} // z-axis; probabilities of electron hopping from $|i\alpha\rangle$ to $|j\beta\rangle$

Typical examples of the density of states for a transition metal

Cohesive energy of TMs dominated by d-band filling

Graphs from: N.I. Kulikov and E.T. Kulatov, J. Phys F: Met. Phys 12, 2267 (1982)

Tight Binding and moments method

all closed paths of n steps beginning and ending on atom i central atom i nearest neighbour next nearest neibour $\mu_3 = \dots + \epsilon_i \beta_{ij} \beta_{ji} + \beta_{ij} \epsilon_j \beta_{ji} + \dots$ $= \epsilon_i$ μ_1 $\mu_2 = \epsilon_i^2 + \beta_{ij}\beta_{ji} + \dots$ $\mu_4 = \dots + \beta_{ij}\beta_{jk}\beta_{kj}\beta_{ji} + \dots \beta_{ij}\epsilon_i^2\beta_{ji} + \dots$

Computation of the n-th moment for atom i involves

Second Moment Approximation (SMA)

Simplication for pure d-band description for transition metals

Using: $\epsilon = a_1 = \epsilon_d \longrightarrow E=0$ for isolated atom

and the variable change: E

$$E' = \frac{E - a_1^{i\lambda}}{\sqrt{b_1^{i\lambda}}}$$

leads to:

$$Z_{i} = \int_{E_{b,min}}^{E_{F}} \frac{\sqrt{4b_{1}^{i\lambda} - (E - a_{1}^{i\lambda})^{2}}}{b_{1}^{i\lambda}} dE = \int_{-2}^{E_{F}'} \sqrt{2 - E'^{2}} dE' = C(N_{el,i})$$

$$E_{band} = \int_{E_{b,min}}^{E_F} (E-\epsilon) \frac{\sqrt{4b_1^{i\lambda} - (E-a_1^{i\lambda})^2}}{b_1^{i\lambda}} dE = \sqrt{b_1^{i\lambda}} \int_{-2}^{E'_F} E' \sqrt{2 - E'^2} dE' = C'(N_{el,i}) \sqrt{b_1^{i\lambda}}$$

where: $\sqrt{b_1^{i\lambda}} = \sqrt{\mu_2^{i\lambda} - \mu_1^{i\lambda} \mu_1^{i\lambda}} = \sqrt{\langle \vec{\psi_i} | \sum_j \vec{\beta}_{ij} \vec{\beta}_{ji} | \vec{\psi_i} \rangle}$

Next, forget about angular dependence in the d-band hopping integrals (i.e. treat the d-band as an s-band), then:

$$E_{band} = C'(N_{el,i}) \sqrt{\sum_{j} \left(\beta'_0 \exp\left(-q'r_{ij}\right)\right)^2} \qquad \qquad \begin{array}{c} \text{Finnis-Sinclair} \\ \text{Embedded atom} \\ \text{SMA} \end{array}$$

Fourth Moment Approximation (FMA)

 $\begin{cases} a_n^{in} = a_2^{in} \\ b_n^{i\lambda} = b_2^{i\lambda} \end{cases} \quad \forall n > 2 \end{cases}$ Termination of the continued fraction expansion by taking: $n_{i,\lambda}(E) = -\frac{1}{\pi} \lim_{\epsilon \to 0} Im \frac{A_0 + A_1 z - ib_1 \sqrt{4b_2^{i\lambda} - (E - a_2^{i\lambda})^2}}{B_0 + B_1 z + B_2 z^2}$ Consequently: • energy band for: $a_2^{i\lambda} - 2\sqrt{b_2^{i\lambda}} \le E \le a_2^{i\lambda} + 2\sqrt{b_2^{i\lambda}}$ $En_{i,\lambda}(E)$ and (E) $n_{i.\lambda}$ still analytically integrable* • possibly pole contribution when $B_0 + B_1 E + B_2 E^2 = 0$ * Analytic solution from:

G. Allan, M.C. Desjongueres and D. Spanjaard – Solid State Communications, Vol. 50, no. 5 (1984)

NB: SMA does not take into account diagonal disorder. FMA does !!! In SMA mixing behaviour has to be adjusted by β_{ij}^{AB}

Monitoring mixing properties and surface segregation

Cluster expansion in the spirit of a TB description:

$$E = NV_0 + \sum_{\mathbf{n}} \sum_{i} p_i^{\mathbf{n}} V_{1,i}^{\mathbf{n}} + \sum_{\mathbf{n},\mathbf{m}} \sum_{\langle ij \rangle} p_i^{\mathbf{n}} p_j^{\mathbf{m}} V_{2,ij}^{\mathbf{nm}} + \dots$$
with:

$$\int_{i} 1 \quad \text{if the atom at site } \mathbf{n} \text{ is of type } i$$

 $p_i^{\mathbf{n}} = \begin{cases} 1 & \text{if the atom at site } \mathbf{n} \text{ is of type } i \\ 0 & \text{else} \end{cases}$

For a perfect, bulk lattice, we obtain:

$$E = C + N_{AB}V_E + \dots$$

with:

$$V_E = V_{2,AB} - \frac{1}{2} \left(V_{2,AA} + V_{2,BB} \right) \longrightarrow \text{excess energy parameter}$$

$$V_E > 0 \longrightarrow \text{demixing}$$

$$V_E < 0 \longrightarrow \text{ordering}$$

Parameter space

Excess energy depends on:

$$V_E = V_E(\Delta\epsilon, \Delta\beta, \beta_{av}, N^d_{e,av}, x_B)$$
 with:

 $\Delta \epsilon = \epsilon_A - \epsilon_B =$ $\Delta \beta = \beta_{AA} - \beta_{BB} =$ $\beta_{av} = (\beta_{AA} + \beta_{BB})/2 =$ $N_{e,av}^d = (1 - x_A)N_A^d + x_BN_B^d =$ $x_B = 1 - x_A =$ $(\beta_{AB} = \sqrt{\beta_{AA}\beta_{BB}} =$

- = diagonal disorder
- = off-diagonal disorder
- = average off-diagonal term
- = band filling
- = composition
- = Sheba rule)

Using canonical rules:

$$\beta_{dd\sigma} = -2\beta_{dd\pi}$$
 and $\beta_{dd\delta} = 0$

the d-band width W is equal to :

 $W = 8|\beta_{dd\sigma}|$

Range of parameter values

variation of $\boldsymbol{\epsilon}$

variation of W

..... according to Papaconstantopoulos

Computation of excess parameter V_E from reference lattice systems

$$V_E = \frac{\Delta E_{coh}}{N_{AB}}$$

= $\frac{N}{N_{AB}} \sum_{i=A,B} x_i \left(\int_{-\infty}^{E_{f,AB}} (E - \epsilon_i) n_{AB,i}^d(E) dE - \int_{-\infty}^{E_{f,A+B}} (E - \epsilon_i) n_i^d(E) dE \right)$
= $\frac{N}{N_{AB}} \sum_{i=A,B} x_i \left(\int_{-\infty}^{E_{f,AB}} E n_{AB,i}^d(E) dE - \int_{-\infty}^{E_{f,A+B}} E n_i^d(E) dE \right)$

Calculation V_E from mixed reference system with 2 impurities, being 1-st, 2-nd, 3-rd, 4-th and 5-th neighbours

Monitoring surface segregation

For a slab geometry on a lattice, using cluster expansion:

$$E = C + N_{AB}V_E + \frac{1}{2}(N_A^s - N_B^s)\Delta V^s + \dots$$

with ΔV^s the surface segregation parameter:

$$\Delta V^{s} = E^{s}_{A}(N^{d}_{e,A}) - E^{s}_{B}(N^{d}_{e,B})$$

= $V^{s}_{1,A} - V^{b}_{1,A} - \left(V^{s}_{1,B} - V^{b}_{1,B}\right) + \frac{1}{2}(\gamma^{s} - \gamma^{b})\left(V_{2,AA} - V_{2,BB}\right)$

$$\Delta V^s > 0$$
 \longrightarrow B segregates to surface

$$\Delta V^s < 0$$
 — A segregates to surface

Computation of surface segregation parameter ΔV^s from lattice slabs

Surface segregation parameter calculated simply as:

$$\Delta V^s = \frac{1}{N^s} \left(E_{sl1} - E_{sl2} \right)$$

or use (method 1b):

Then, assuming
$$V_{2,AB}^{sb} = V_{2,AB}^{bb}$$
, again:
 $\Delta V^s = rac{1}{N^s} (E_{sl1} - E_{sl2})$

For give N^d_e, first compute charges on A and B, solving:

$$N_{e}^{d} = \int_{-\infty}^{E_{f,slA+slB}} (x_{A}n_{slA}(E) + x_{B}n_{slB}(E))dE = x_{A}N_{e,A}^{d} + x_{B}N_{e,B}^{d}$$

Subsequently compute:

$$\Delta V^{s} = \frac{1}{N^{s}} \Delta E^{s} = \frac{1}{N^{s}} \left(E^{s}_{A}(N^{d}_{e,A}) - E^{s}_{B}(N^{d}_{e,B}) \right)$$
$$= \frac{1}{N^{s}} \left(E_{slA}(N^{d}_{e,A}) - E_{bA}(N^{d}_{e,A}) - (E_{slB}(N^{d}_{e,B}) - E_{bB}(N^{d}_{e,B})) \right)$$

Parametrisation of TBFMA potential

Starting with Nickel (E_{coh} =-4.46 eV, W_d =3 eV).....

Conclusion: a d-band basis cannot give a good fit of total energy and electronic structure (d-band width W_d) at the same time ----> next step: sd-band basis set

Simulations

Constructing a family of potentials from an existing TBFMA model for Ni*

*H. Amara, J.M. Roussel, C. Bichara, J.P. Gaspard, F. Ducastelle, Phys Rev B 79 (2009) 014109

... pictures from Ducastelle in "Alloys"

Simulations performed for two alloys from the family

alloy 1 after melting

alloy 1 after recrystallisation

initial ordered cluster

alloy 2 after melting

alloy 2 after recrystallisation

Conclusions

The fourth moment approximation includes the effects the electronic structure satisfactory by taking into account both diagonal and off-diagonal disorder.

The impact of the electronic structure on mixing properties is significant.

A significant improvement of the TBFMA description of the late transition metals seems achievable by using an sd-band basis set (instead of just d). The improvement regards the electronic structure (band width) and thus the mixing properties.

Context

The use of the Fourth Moment Approximation* (FMA) within a Tight Binding (TB) description to build an interatomic interaction model for atomistic simulations seems a significant step forward w.r.t. the Second Moment Approximation (SMA):

- it includes electronic structure properties
- more quantum aspects are preserved
- due to a recent effort**, simulations based on FMA are only up to one order of magnitude slower then for SMA models

With the expected increase of accuracy of the FMA w.r.t. SMA, predictions of equilibrium properties and the critical temperature of nano clusters of (late) transition metal alloys from grand-canonical Monte Carlo simulations should become much more reliable.

As a important test for the FMA, before starting to parametrize a FMA based model for real transition metals (TMs) relevant for SimNanA, we performed a FMA based lattice model study of the trends in the bulk mixing properties and surface segregation properties.

* An example of a TBFMA model for C-Ni systems is described in: H. Amara, J.M. Roussel, C. Bichara, J.P. Gaspard, F. Ducastelle, Phys Rev B 79 (2009) 014109 ** J.H. Los, C. Bichara and R.J.M. Pellenq, "Tight Binding within the Fourth Moment Approximation: efficient implementation and application toetc", submitted to PRB

Examples of the local densities of states for TB model within 4-th moments approximation (a2=0, b2=1)

