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What is molecular dynamics? 

Two main uses: 

Dynamical evolution of a system → non-equilibrium behavior, transport, transition

Thermodynamics → equilibrium properties 

Molecular Dynamics (MD) is a numerical simulation technique aiming at 
modeling the evolution of an ensemble of particles as a function of time

In a MD simulation, the classical equation of motion governing the microscopic 
time evolution of a many-body system are solved numerically subject to 
boundary conditions appropriate for the geometry or symmetry of the system.  
(Tuckerman and Martyna)
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A bit of history 

The first MD simulation by Fermi / Pasta / Ulam / Tsingou
64 atoms !

Not the first atomistic simulation (Monte Carlo, 1953)

Maniac I, Los Alamos

Thermalization not always achieved!

→ No ergodicity



A bit of history: milestones 

Constant temperature molecular dynamics (Nose)
Ab initio molecular dynamics (Car-Parrinello)

1960

1957

1967

1971

1981

1984
1985

Constant stress molecular dynamics (Parrinello Rahman)

Molecular dynamics of polyatomic systems, 216 H2O molecules (Rahman Stillinger) (first 3D visualization?)

Algorithm for time integration / Neighbor list for computational efficiency (Verlet)

Dynamics of radiation damage, 998 particles (Vineyard et al)

Hard sphere liquid, 500 particles (Alder and Wainwright)



A bit of history: size milestones 

2004

2006

2013

2019 109 atoms (one entire gene)

1010 atoms

3×1011 atoms

4.125×1012 atoms

A. Zepeda-Ruiz et al., Nature 550, 7677 (2017)

Plastic deformation of tantalum
268 millions atoms

~ 85 x 169 x 338 nm3

Maximum size depends on the computational resources

Maximum size depends on the simulation time and interaction potentials 

Large systems involves other issues



Why “molecular” and not atomistic?

Contessoto et al (2022) 
https://doi.org/10.1007/978-1-0716-1716-8_16

Alder and Wainwright (1957)
Hard sphere model as the unit

Rahman Stillinger (1971)
Water molecule as the unit 

A bead (representing a molecule, or a part of 
it, or a part of a polymer, etc…) as the unit  

The term ‘Molecular’ comes from the historical context, and the first 
uses of molecular dynamics (liquids, chemistry)

Atoms !!!



Systems that can be simulated

Liquids

Solids (crystals, disordered, heterostructures)

Molecular crystals

Molecules

Complex fluids

Gas

Klein and W. Shinoda, Science (2008)



Systems that can be simulated

Ultra nanocrystalline diamond Solid-liquid interface

Nanoindentation of ZnO nanowireHafnium dioxide growth

FeNi nanoparticle



Examples

Au nanowire formation and extension 

H. S. Park and J. A. Zimmerman, Phys Rev B, 72, 054106 (2005)


nanowire2



Examples

Cavitation in a liquid metal

T. T. Bazhirov, G. E. Norman, and V. V. Stegailov, JPCM, 20, 114113 (2008)


homogen_cavit



Examples

Compression of nanopillars made of pyrocarbons 

L. Pizzagalli, J. Durinck, P. Lafourcade, JM. Leyssale, to be published




The theory and the basics



The theory: Newtonian mechanics

We have a set of N particles defined by their positions, their velocities and their mass: 

The system’s dynamic is described by the Newton’s 2nd law of motion

is the sum of all forces exerted on particle i . It depends only on particles positions (and not on velocities)

To obtain the dynamics, we need to solve N decoupled differential equations



The theory: Hamiltonian mechanics

The time evolution in phase space is defined by

There are 6N independent variables (usually a bit less depending on initial conditions)  

The Newton’s 2nd law of motion can be expressed with Hamiltonian mechanics



The theory: Energy and momentum conservation

The Hamiltonian (the energy) is a constant
 
An important consequence is that energy is conserved during the system dynamic evolution (isolated system)

The total linear and angular momenta are conserved during dynamic evolution



Solving the equation of dynamics

An analytical solution is not possible

Numerical integration requires time discretization

The integration accuracy critically depends on the 
timestep δt

The chosen δt should be small in order to obtain physically accurate trajectories simulation

BUT δt defines the time scale of the simulation, and we want it to be as large as possible

The best compromise depends on multiple factors (temperature, particles mass, nature of the physical interactions)



Timestep optimization

Should be done at the start of a ‘new’ study 

δt should be as large as possible, with an ‘accurate’ trajectory, and conserving the total 

It depends on the nature of the interaction, the mass of atoms, the temperature, the total duration

As a rule of thumb, 

RMS energy fluctuation                                  (Verlet)  

RMS energy fluctuation   

Usual values in material science are 0.5 – 2 fs



Verlet algorithm

Probably the most famous
First use by Jean-Baptiste Delambre (1791)

Accuracy is                 by step, but leads to a total accuracy of                  by accumulation

Cancellation 1st and 3rd order 
→ better accuracy than simple Taylor 



Velocity Verlet algorithm

More simple than ‘normal’ Verlet algorithm

Often used in code

Same global error than normal Verlet, i.e             



Other algorithms

A good algorithm is fast, allows for large δt, is as accurate as possible, 
allows for energy and momentum conservation, and is time reversible 

The accuracy is different for all algorithms, but in practice it is simpler to 
play with δt

Velocity Verlet is the most used in literature (simple and efficient)

Leapfrog integrator: a variant of Verlet algorithm (Hockney 1970)

Beeman’s algorithm: another variant of Verlet algorithm (Beeman 1976) 

Gear predictor – corrector algorithm (1966) 

r-Respa : reversible reference system propagator algorithm (Tuckerman 2000)

And several others...

Allen and Tildesley (1987)

Verlet

Gear



Algorithm in practice...

Potential energy calculation 
from positions

Forces calculation either directly 
or as derivatives of the potential energy

Numerical integration
Verlet algorithm (or others)

Output

Trajectories (positions and velocities) of all particles

Total energy

Forces

Input 



A molecular dynamics run in practice

1 - Define the interactions between particles (the potential)

2 - Define the boundary and control conditions

3 - Set the initial state (initial positions, initial velocities)

4 - Run the simulation

5 - Analyze the output



Interaction potentials



Classical interatomic potentials

Idea: describe the interactions between atoms using models (empirical or not)

Proposed well before the first molecular dynamics simulations

Used in the first molecular dynamics simulations (1957)

Often called force-field methods in chemistry

Self-energy (often = 0) Pair energy Angular energy Higher order terms

All the physics is included in the functions fi

Forces obtained as the derivatives (numerical or analytical) of the energy



Lennard-Jones potential (1924-1931)

Ion-ion repulsion van der Waals attraction

Pair contributions only

One of the oldest and simplest potential, extensively studied, and still largely used as a model potential for model 
system

Computationally very efficient (only power, with the repulsion term as the square of the attraction one)

Physical meaning of the attraction term

Potential developed for liquids and for vdW solids (but used in many other cases) 



Other standard pair potentials

Buckingham potential (1938)

Morse potential (1929)

Mie potential (1903)

Work extremely well for weakly bonded systems

Computationally fast

Poor reliability for modelling surface, melting, phase transitions of strongly bonded solids (metals, covalent, oxides)

Physical meaning of the attraction term

Potential developed for liquids and for vdW solids (but used in many other cases) 



The Stillinger-Weber potential

An example of potential designed for materials with covalent bonds 

F. Stillinger et al., Phys. Rev. B (1985)

Originally designed for silicon (zinc-blende structure)

Penalty energy for bending the bonds

More parameters than for pair potentials (9 for silicon)

Available sets of parameters for many materials



Many-body potentials

EAM potentials (like ‘EMT’, ‘glue’ model)     Daw, Foiles, and Baskes, Mat. Sci. Rep. 9 (1993) 251-310  

And even more sets of parameters

The bonds strength depends on the local atomic environment

Extension with bond directionality (for transition metals, semiconductors): MEAM 

It exists hundreds of different potentials: 

Tersoff (semiconductors)
EDIP (semiconductors)
AIREBO (C-H)
Beck (He)
MGPT (transition metals) 

Attractive embedding energy Ion-ion repulsion



More and more complex potentials

BUT slow, and also overfitting issues

ReaxFF simulation on a low-density battery electrolyte 
(PF6/DMC) between two graphite surfaces 

Bedrov, D. et al. J. of Phys. Chem. A 2012, 116, 2978

Potentials designed to model multi-components systems, with a diverse electronic structure

REAXFF (A.C.T. van Duin, W.A. Goddard, III), Charge-Optimized Many-Body potentials COMB (S. Phillpot)



Interaction cutoff

In practice, interactions are considered to be negligible beyond a certain threshold (the cutoff, usually 3 Å to 5 Å)

It determines the number of interacting neighbors and the computational cost (scaling O(N)) 

Potential issue with discontinuities at the cutoff (use of smoothing functions)  

Some potentials make use of Coulombic interactions (long range). For instance, ionic materials with charges. In 
that case, there is no cutoff and interactions between all atoms are computed. The computational cost increases.



Dealing with long range interactions

Replace point charges with smeared charge distribution and split between short-range and long-range parts 

Can be dealt with the simple Ewald summation. The scaling is O(N3/2)

Faster methods have been developed:

Particle mesh Ewald. Charges interpolated on a 3D grid + FFT

Particle-particle-particle-mesh (P3M). The scaling is O(N logN). 

Multilevel Summation Method (MSM): Several meshes with different resolutions. The scaling is O(N) (but with a 
substantial additional cost)

Fast Multipole Method (FMM): charges interpolation with polynomials. The scaling is also O(N). 

And probably others I am not aware of...

Approximations are made in all case, and an ‘accuracy’ parameter on energy/forces has to be defined 



Machine learning interatomic potentials

http://www.tokui.org

AI techniques associated with simplified structural 
descriptors, non-physical structure-energy mapping 

GAP, MTP, ACE, AGNI, etc...

Huge progress in accuracy/cost tradeoff in the last few years

Extremely good for interpolation, much less for extrapolation
→ the ‘quality’ of the database is crucial 

S.R. Xie et al, npj Computational Materials (2023)



Energy/forces from electronic structure

Usual approaches to compute the Hamiltonian (and its derivative) are:

Instead of atoms, the matter is considered as composed of ions and electrons

Ion-ion forces are easy to compute (Coulombic interactions)

Ionic forces due to electrons can be obtained using the Hellman-Feynmann theorem

A tight-binding description (DFTB formalism for instance) 

Density Functional Theory 



MD from electronic structure

InitialisationInitialisation Compute e- 
structure

Compute e- 
structure

Compute ionic 
forces

Compute ionic 
forces

Update ionic 
positions

Update ionic 
positions

InitialisationInitialisation Compute e- 
structure

Compute e- 
structure

Compute forces
on ions and φ

Compute forces
on ions and φ

Update ionic 
positions and φ
Update ionic 

positions and φ

Two different kind of dynamics

Born-Oppenheimer 

Car-Parrinello

Car-Parrinello is faster than Born-Oppenheimer, BUT it is trickier to use, it needs to be coded, and the timestep is at 
least one order of magnitude lower



MD from electronic structure

45 eV transferred to a F atom

BO Molecular dynamics

Irradiation of a Mxene: Ti3C2F2




Interatomic potentials: conclusion

One can define four classes of potentials:

It is important to know what you can get from the potential (and what you cannot get) → read the literature / make tests

There is a trade-off to accept between computational cost and accuracy/reliability

Use the right potential for a given material

Model potentials: fast, accurate for a limited set of materials, largely used to test models  

Semi-empirical potentials: Often fast and reliable, with a good to moderate accuracy, not available for all 
materials (especially alloys), not easy to develop new ones

Machine learning potentials: Higher CPU cost, with excellent accuracy, could be developed for any 
materials with a relative easiness, reliability needs to be tested

‘Electronic structure’ potentials: Very high CPU cost with bad scaling, excellent accuracy and reliability 
(DFT, lower for DFTB), available for almost all materials (DFT) 



Setup: initial conditions, boundaries 
and  controls



Initial positions

The initial atomic positions                  need to be defined for each MD simulation

Several tools are available to build simple (pristine crystalline bulk) and complex (heterostructures, 
porous, defected, etc...) systems : python libraries, Atomsk, MD codes, etc…



Initial positions: pitfalls

A possible issue arises when two atoms are initially too close (bad construction, bad translation vectors using PBC, 
random positions)
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Separation (Å)

This is often the fingerprint of an error...

An initial minimization with limited forces can help in a few cases



Initial velocities

The initial velocities can be set according to a Gaussian distribution centered on the target temperature (with 
zero momenta) . A thermalisation phase is required to ensure the correct excitation of vibration modes. 

The initial atomic velocities                                   also need to be defined

The temperature of a MD simulation is computed from atomic velocities, 
assuming that all atomic motions correspond to a true thermal motion 
(i.e. for instance all allowed vibrational modes are excited in a solids)

This condition is equivalent to total 
translation and rotation momenta 
equal to zero 



Boundary conditions

Periodic boundary conditions (PBC) to model an infinite 
system

Fixed boundary conditions for finite systems

PBC can be used to model all situations (using enough volume around the system) 



NVE ensemble

Number of particles, volume, and total energy are constant

Microcanonical ensemble (no external interaction/exchange)

Equipartition of initial energy between kinetic 
and potential energies 

Setting accurately the initial temperature could 
be difficult using the NVE ensemble

The temperature is not a constant



NVT ensemble

Number of particles, volume, and temperature are constant (isothermal-isochoric)

Isothermal-isochoric (canonical) ensemble (external interaction/exchange)

=> The total energy is not a constant 

=> The kinetic energy is a constant

NVT can be obtained using a ‘thermostat’



NVT ensemble

Many thermostats have been proposed in the literature:

Simple rescaling: velocities are rescaled to the target temperature at regular intervals

Andersen: Velocities randomized (Gaussian distribution) at regular intervals

Nose-Hoover: each particle is coupled with an external ‘bath’       Classic ! 

Berendsen: ‘Stochastic’ rescaling (‘flying ice cube’ issue)

Bussi-Donadio-Parrinello: Corrected Berendsen (yields the expected canonical distribution)       

Langevin: Competition between friction and a stochastic noise

In all cases, a thermostat parameter (‘strength’ or time) must be set. An optimal value should be determined (to void over-
damping and under-damping phenomena). 

=> Read the literature and the documentation of codes for good guesses !



NPT runs

Number of particles, pressure (stress tensor), and temperature are constant

Isothermal-isobaric ensemble (external interaction/exchange)

=> The total energy is not a constant 

=> The kinetic energy is a constant

A barostat is used in addition to a thermostat:

Berendsen

Parrinello-Rahman

Useful for studying thermal expansion, phase transitions, melting points, density of fluids, and more generally, the 
properties of solids and fluids under pressure (and stresses for solids)



μVT runs

Chemical potentials, volume, and temperature are constant

Grand canonical ensemble

=> The total energy is not a constant 

=> The kinetic energy is a constant

M.M. Islam et al, Phys. Chem. Chem. Phys. (2015)

Obtained by combining MD and Monte Carlo simulations 

Useful for studying adsorption equilibrium (at surfaces, in pores, in defects, or in pristine materials), which is useful in 
thematics like growth, hydrogen storage, lithiation (the example above), etc...



Associated techniques for 
configuration space exploration



Potential Energy Surface (PES)
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Coordinates (3N)

Minimum (global)
Minimum (local)

Saddle point

Energy barrier

Important objectives:

Find the lowest energy configuration (0K)

Find stationary states at finite temperature (equilibrium)

Evolution of the system under an external force/constraint (out of equilibrium) 



Energy minima determination
E
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Coordinates (3N)

T = 0K F → 0   E → E
min

‘Static’ techniques

Conjugate gradient
Newton-Raphson
Broyden-Fletcher-Goldfarb-Shanno (BFGS)

‘Dynamic’ techniques

Quickmin
FIRE

Global optimization

See for instance D.J. Wales, Energy 
landscapes, Cambridge (2003)



MD determination of activation energies

MD + Arrhenius plots
T ≠ 0K
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Coordinates (3N)

Perform several (many) MD runs at different 
temperatures and record the waiting time 
before the target transition



MD determination of activation energies

Ea = 0.3 eV
A = 1013 s-1  

General technique 

Many runs required

Limited to low energies

Issue if competing mechanism

Limited temperature range for 
some materials



Static determination of activation energies
E
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Coordinates (3N)

Minimum (global)
Minimum (local)

Saddle point

Energy barrier

H. Jónsson,Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific (1998)

Static calculation (no temperature): 
use of constraints

Several methods proposed: DRAG, 
NEB, String, ...

These methods assume that ending 
trajectory points are known (at least 
approximately)

An initial guess is needed 



The DRAG method

Very simple and intuitive

Several calculations are run, usually sequentially. In those, one coordinate of one atom is constant and 
set to an increasing value, while all other coordinates are optimized. The chosen atom and coordinates 
value define the ‘core path’ of the mechanism.

Efficient, but succeed only when the transition mechanism is ‘simple’, and easy to guess. 



The Nudged Elastic Band (NEB) method

The first-proposed chain-like method

Several initial configurations are built, usually as a linear interpolation between starting and ending structures

Each configuration is then relaxed at 0K, usually simultaneously

Each configuration is bonded to neighbor configurations with springs, forming a string of configurations in 
configuration space

Minimum Energy Path

H. Jónsson,Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific (1998)



The Nudged Elastic Band (NEB) method

The relaxation is done using only ‘spring’ forces, parallel to the string of configurations, and the true forces, 
perpendicular to the string  

The relaxation brings the chain of state close to the minimum energy path between ending points

Minimum Energy Path

H. Jónsson,Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific (1998)



The Nudged Elastic Band (NEB) method

Very robust approach, easy to increase accuracy (more replicas), and easy to implement in codes (available in many). 
Several refinements (climbing images,free-end...) 

The joint relaxation of many replicas can be difficult (bad scaling), and the spring constants between replicas should 
be carefully chosen. 

NEB is like a conjugate gradient method for minimum energy path. The relaxation brings the chain of state close to 
the minimum energy path between ending points. The initial guess is critical

Minimum Energy Path

H. Jónsson,Classical and Quantum Dynamics in Condensed Phase Simulations, World Scientific (1998)



NEB: an example

 



Dimer, ART

It is possible to perform a dynamic evolution (coupled with KMC for instance) 

More or less efficient depending on the potential energy surface (Slide prepared BEFORE the talk of Antoine Jay)

Complicated (or counter-intuitive) mechanisms can be found with these techniques

When the ending state and the mechanism are not known 
→ Dimer (Jónsson), ARTn (Mousseau)

Starting from the minimum energy configuration, an exit 
direction is randomly chosen 

The configuration ‘climbs’ towards the nearest saddle 
point. Once it is reached, a simple relaxation is done 
allowing to reach the minimum in the next basin. 



Scales and data issues



Computational cost of the simulation

The computational cost of MD is essentially due to the calculation of the interaction between particles/atoms

Depends on the complexity of the interatomic potentials
LAMMPS: optimized routines for certain classes of potentials, GPU-based 
calculations

Depends on the number of interactions to be calculated 
For short-range potentials, the use of a cutoff allows to restrict the 
calculation between nearest neighbors. A O(N) scaling is obtained. 
For long-range potentials (i.e. Coulombic potentials), all interactions need 
to be calculated, and the cost increases (and the scaling worsens)

Charge equilibration if variable charge model (oxides). Requires an 
additional iterations cycle 

A. P. Thomson et al. Comput. Phys. Com. (2022)



Space scale

Simulation with N atoms → dimensions ~ ∛N for a 3D system

Let us consider a 3D volume of about (50 nm)3, i.e. 6-9 106 atomes. 

For a ten times larger simulations (in terms of atoms number), the system dimension are 
increased by only 10~2.15, leading to dimensions ~ (100 nm)∛ 3, but a simulation 10 times 
longer (for O(N) potentials)

Very large simulations are restricted to short times (and vice versa)

The upper threshold of MD simulations are usually restricted to several tens of 
nanometers (up to hundred nanometers) 

Mesoscopic or macroscopic scales are out of reach



Time scale

Usual values for timestep are ~1 fs  
→  one needs 106 iterations for a MD simulation duration of 1 ns

MD suited to model many physical phenomena, but 
their characteristic timescale is often 10-6s - 1s. 

In materials science, the MD time is often at best 1 ns 
(depending on potential), i.e. a gap of 103 - 109 !!!

It is hardly possible to model the dynamical evolution of 
a system over macroscopic times using MD simulations



An example of a large scale simulation

A. Zepeda-Ruiz et al., Nature 550, 7677 (2017)

Plastic deformation of Ta
268 millions of atoms
~ 85 x 169 x 338 nm3

EAM potential


loops.x1.bigsystem



The data issue

Example: MD simulation with 107 atoms, and total time of 1ns, i.e. 106 iterations
One image of the system (position, force, velocity, id, type) ~ 800 Mo
Saving one image for each iteration then amounts to ~ 800 To (which frequency to save images ?)

 

An MD simulation…...generates about 1 exabyte (=1018 bytes) of digital data in just one day 
on the full Sequoia supercomputer, an amount comparable to Google’s estimated worldwide 
storage capacity.

V.V. Bulatov et al., Nature 2017

It is then possible to simulate larger systems, over longer times, but the price to pay is also to manage an increasing 
amount of data to store and analyze. 

Treatment of this huge amount of data requires to make post-treatments which becomes more and more longer (and 
sometimes even longer than the simulation itself), and to develop specific tools to extract the meaningful information.
 



Overcoming space and time scale issues



Sequential coupling (time or space)

A B‘Feed’ the high scale technique (less accurate/reliable) 
by the low scale one (more accurate/reliable)

 

Accurate calculation of a set of fundamental properties using DFT, then generation of an interatomic potential using this 
specific database

MD calculation of dislocation core properties (stability, mobility, interaction mechanisms) → Discrete Dislocation Dynamics 
calculations → Constitutive equations in FE codes

MD/DFT calculations of atomistic mechanisms and associated activation energies → Kinetic Monte Carlo simulations



Accelerated MD techniques

With available computational resources, one can investigate an enormous amount of possible systems (with 
molecular dynamics). The true issue is the time scale. 

Several approaches allowing for extending simulation time have been developed 

Temperature Accelerated Dynamics

Parallel Replica Dynamics

Hyperdynamics

Metadynamics

Adaptative Biasing Force 

Steered Molecular Dynamics

Targetted Molecular Dynamics

Basin hopping

                            And probably many others 



Temperature accelerated dynamics

Increase the temperature to get transitions 
during short time simulations

‘Artificial’ enhancement of mechanisms 
activation

Not suited for materials with low melting 
temperature

Assume that all possible thermally activated 
mechanisms scale together

Allow to discover new transition mechanisms
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Temperature accelerated dynamics

Spurious effects of high temperature can be 
corrected (Voter et al.)

The idea is to filter events that should not 
occur at the target temperature

Can be used if 

System with rare events (high energies)

Transition state theory is valid (not correlated 
mechanisms)

Harmonicity

No influence from pre-exponentional factors

Cu/Cu(001) growth

Exp: 1 ML/min

MD: 108 ML/s

TAD: 5×103 ML/s

Shim et al, PRL (2008)



Parallel Replica Dynamics

Use the fact that modern calculators are massively parallel → temporal parallelisation

Very high time boost in many cases (depends on event frequency and CPU numbers) 

Exact dynamics (correlated events are allowed)

Special coding is necessary to detect events, and a large number of CPU is required

D. Perez, ARCC (2009)

A. Voter, Phys. Rev. B (1998)



Parallel Replica Dynamics

Tensile deformation of thin Ag nanowires

D. Perez et al, Comp. Mat. Sci. (2015)

Initial stages: partial dislocations, 
leaving multiple stacking faults 103 s-1 108 s-1 

Necking SF healing Phase change



Hyperdynamics

A. Voter, J. Chem. Phys (1997)

D. Perez, ARCC (2009)

The PES is (cleverly) modified with a bias potential, in order to increase the event rate 

Assume that transition state theory is valid (no correlated events)

The main issue here is obviously how to build the bias potential (must vanish at saddle points). This is the 
objective of intensive investigations

The simulation time becomes 



Hyperdynamics

K. Fichthorn, J. Phys. Cond. Mat. (2009)

Diffusion of small clusters on a surface 
(Here Al/Al(001))
 

Identification of several diffusion 
mechanisms in a limited MD time
 



Steered and targetted molecular dynamics

S. Park et al, J. Chem. Phys (2003), J. Chem. Phys. (2004)

The system is forced to evolve towards a target final configuration, using specific constraints (for instance forces 
or velocities are applied to a group of atoms). 

Allows for searching complex, counter-
intuitive, transition paths.

The dynamic is biased

Quantities like free energy can be 
estimated 



Coarse grained Molecular Dynamics

http://compmech.lab.asu.edu/research.php

http://www.ks.uiuc.edu/Research/cgfolding/

The ‘base unit’ (usually the atom) is replaced by a bigger 
entity (often a molecule), and a different interaction 
model

The internal dynamic of the new unit is ignored

Larger spacer and time scale can be reached

Analogy with approachs like DDD, finite 
elements, pseudopotentials

Essentially used in chemistry, biochemistry, 
soft matter, etc...



Concurrent coupling 

B

A

Spatial extension of the dynamics

Well suited for some problems (long range interactions, boundary issues, …)

The coupling is done by alternating between the two methods, or by a concurrent dynamics

Couple the high scale technique (less accurate/reliable) 
with the low scale one (more accurate/reliable)

 



QM/MM

‘Active’ region: described by a QM method
‘Surrounding’ region: described by MM method

Ca ion interacting with amino-acid in water
Andreas W. Götz et al., J. Comput. Chem. (2013)

Historically, QM/MM is the first approach to try spatial division (A. Warshel and M. Levitt, J. Molecular Biology (1976)) 

Essentially developed and used in chemistry 



Fracture: a multiscale problem

Abraham et al. EuroPhys. Lett. 1998

The inherent multiscale nature of fracture makes it a good problem for MD multiscale techniques

Macroscopic Atomistic Ab initio Dynamics (MAAD) 

Couple finite elements – potentials – tight-binding 



Fracture: a multiscale problem

N. Bernstein et al. Rep. Prog. Phys. (2009)

Two regions described by two different formalisms

It is necessary to find a seamless way to 
couple the regions, with no artefacts, in 
order to simulate an homogeneous system.

Several approaches, which will not be 
detailled here



Resources



Available MD codes

Several MD codes, often open source and free to use for academics, CPU/GPU parallelized, with full documentation, 
can be found on the net 

LAMMPS : Material sciences, https://www.lammps.org

NAMD : Biochemistry, https://www.ks.uiuc.edu/Research/namd/ 

GROMACS : Biochemistry, https://www.gromacs.org

GULP : Materials science, https://gulp.curtin.edu.au/

AMBER : Biochemistry, https://ambermd.org/ 

NWCHEM : Biochemistry, https://www.nwchem-sw.org/

and also Python packages (HOOMD-blue) 

Several Python packages like ASE, mdapy, pysimm, atomman, and codes like Atomsk, can be used for setting up MD 
input, and analysing the output



LAMMPS

A. P. Thomson et al. Comput. Phys. Com. (2022)

Open source, parallellized, fast (CPU/GPU)

Modular, user oriented, usable as a library

Largely documented, forum for help, tutorials,…

Focus on materials science

Includes analysis descriptors and tools

Options to investigate problems in many domains: 

Thermal, vibrational, mechanical properties

Growth, transport

Irradiation, catalysis, phase transition

etc….
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Ed. M. Meyer and V. Pontikis, NATO ASI series vol 205 Kluwer Academic Publishers 1991

Molecular Dynamics Simulation: Elementary Methods, J.M. Haile, Wiley 1997

Molecular Modelling: Principles and Applications, A.R. Leach, Pearson 2001

Molecular Modeling and Simulation, T. Schlick, Springer, 2002

Understanding Modern Molecular Dynamics, M. E. Tuckerman and G. J. Martyna, J. Phys. Chem. B 2000, 
104, 159-178

Dynamique moléculaire appliquée aux matériaux, C. Becquart and M. Perez, Techniques de l’ingénieur, 2010



Thank you for listening
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