(Discrete) Dislocation Dynamics Simulations

Mesoscopic simulations of dislocations collective properties and plastic deformation

riccardo.gatti@cnrs.fr

LEM, CNRS-ONERA, 29 av. de la Division Leclerc 92322 Cedex, Chatillon, FRANCE

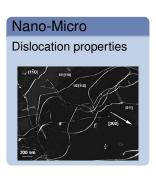
école d'été "Modélisation des Matériaux" 2024

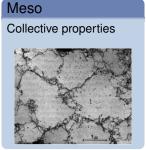
Plan

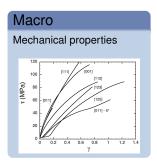
- Introduction
- Discrete Dislocation Dynamics Simulations (DD)
- Main ingredients in DD simulations
- DD : Boundary conditions
- Simple examples

- Introduction
- 2 Discrete Dislocation Dynamics Simulations (DD)
- 3 Main ingredients in DD simulations
- 4 DD : Boundary conditions
- Simple examples

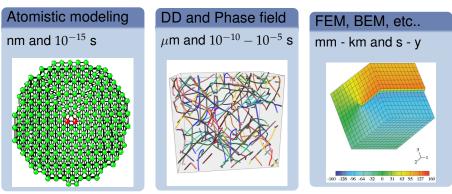
The different scales of crystal plasticity





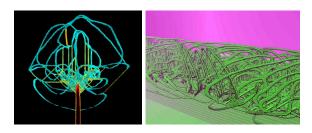


Simulations of plastic deformation



Modeling in 'material sciences' and 'mechanical engineering' is today a strategic activity of many businesses.

Atomistic simulations of plasticity



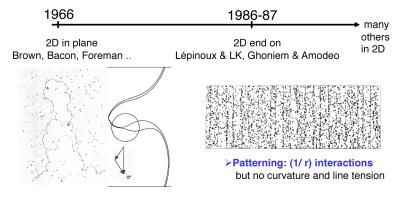
Atomistic simulations can today accounts for more than 10^{10} atoms.

Nevertheless such simulations will always be restricted to the modeling of volumes as small as a few nanometers per side.

- Introduction
- Discrete Dislocation Dynamics Simulations (DD)
- Main ingredients in DD simulations
- 4 DD : Boundary conditions
- Simple examples

DD simulations

At beginning - 2D simulations



Line tension, obstacle pinning but planar slip in a single plane

Real plasticity is a combination of both

Three dimensions DD simulations

3D DD - microMegas (1992)

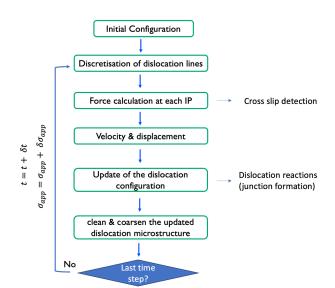
Elastic Properties Local rules Periodic boundary conditions ...

What are DD simulations good for?

- Expand the dislocation theory predictions
 - To Explain and to model complex plastic behaviors
 - To simulate single crystal, polycrystals and multiphased materials with a unique formalism.
- Do the link between discrete and continuous modeling
 - Identify, test and validate new physically justified material laws.
 - Measure model parameters for large scale simulations (coarse graining).

- Introduction
- 2 Discrete Dislocation Dynamics Simulations (DD)
- Main ingredients in DD simulations
- 4 DD : Boundary conditions
- Simple examples

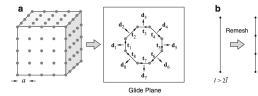
DD flowchart



Discretization of the dislocation lines

Lattuce simulations

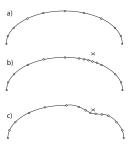
Dislocation lines are describe with "chains" of straight segments including one or few integration points (IP) to compute forces.



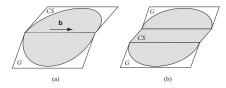
- Crystal symmetry
- Coding simplicity

Remarks on line discretization

 The number of integration point is imposed by the stress gradient



Dislocation cross-slip



Cross-slip, like other stochastic processes taking place during dislocation dynamics can be simulated with a "Monte-Carlo" algorithm, if one can define the corresponding probability function.

$$P(l) = \beta \frac{l}{l_0} \frac{\Delta t}{\Delta t_0} \exp(\frac{|\tau| - \tau_{\text{III}}}{kT})$$

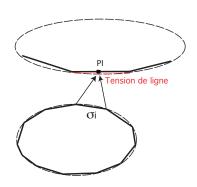
Forces in infinite crystals

- Dislocation segment stress field, σ_i .
- Peach-Koehler force

$$\frac{\mathbf{F_j}}{\mathbf{L_j}} = (\sum_i \sigma_i + \sigma_{app}).\mathbf{b_j}) \times \boldsymbol{\ell_j}$$

Line tension correction

$$\Gamma \approx \frac{\mu b^2}{4\pi R} \ln(\frac{R}{r_0})$$

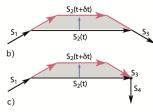


Computation of forces at the IP is the most CPU extensive part of DD simulations ($\approx 90\%$).

Dynamics and time integration

For many problems, dislocations can be considered as classical objects with a very low mass and high energy. Hence, Newton law equations can be integrated without considering inertial effects.

$$\mathbf{r}(t + \delta t) = \mathbf{r}(t) + \delta t.\mathbf{v}(t)$$
$$\mathbf{v}(t) = \frac{\tau^*(t).\mathbf{b}}{B(T)}$$



B is a viscous coefficient accounting mainly for dislocation-phonon interactions. It is material and temperature dependent.

Optimizations of the forces computation

- Multi-poles algorithm
- Parallelization
- Multi time steps integrations
 - Today, free (and open source) codes exist and can be download on the web.
 - microMegas http://zig.onera.fr/mm home page
 - Paradis http://paradis.stanford.edu
 - Model https://bitbucket.org/model/model/wiki/Home
 - etc ...

Deformation and rotation fields

A plastic shear increment on glide system "s" is induced by each displacement of the dislocations in their glide planes.

$$\gamma^{(s)} = \sum_{i=1}^{N} \frac{|b_i| A_i^{(s)}}{V}$$

At each time step, increments of the deformation and the rotation tensor are calculated for the total simulated volume (or in sub-volumes)

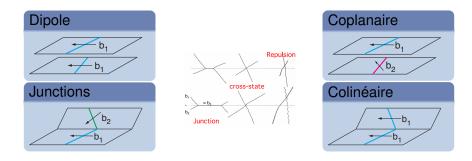
$$\mathrm{d}\varepsilon_{ij}^p = \sum_{s=1}^n \gamma^{(s)} \mathrm{d}\epsilon^{(s)} \quad \text{ et } \quad \mathrm{d}\Omega_{ij}^p = \sum_{s=1}^n \gamma^{(s)} \mathrm{d}\omega^{(s)}$$

with

$$d\epsilon^{(s)} = \frac{1}{2} (\mathbf{m}^{(s)} \otimes \mathbf{n}^{(s)} + \mathbf{n}^{(s)} \otimes \mathbf{m}^{(s)})$$
$$d\omega^{(s)} = \frac{1}{2} (\mathbf{m}^{(s)} \otimes \mathbf{n}^{(s)} - \mathbf{n}^{(s)} \otimes \mathbf{m}^{(s)})$$

m=shear direction n=glide plane normal

Dislocation-dislocation reactions



- Contact reactions are elastically driven (poorly affected by dislocation core).
- Additional degree of freedom are introduced along the lines at contact points.
- Junction zipping and unzipping is controlled by line tensions at the triple nodes.

Comparison with atomistic simulations

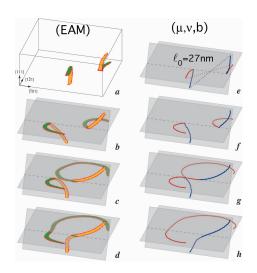
Collinear annihilation

Comparison between MD and DD (here Al).

At critical curvature (b et f):

MD
$$\tau_c/\mu = 1.85 \, 10^{-2}$$

DD
$$\tau_c/\mu = 1.67 \, 10^{-2}$$

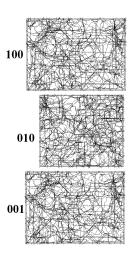


- Introduction
- 2 Discrete Dislocation Dynamics Simulations (DD)
- Main ingredients in DD simulations
- 4 DD : Boundary conditions
- Simple examples

Periodic boundary conditions (PBC)

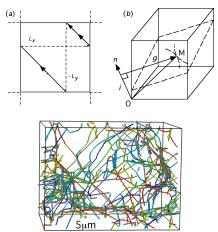
PBC

- Flux balance at boundaries
- Continuity of dislocation lines
- Infinite crystal mechanics



Dislocation mean free path

PBC artifact: dislocation self annihilation



Complex boundary conditions

Surfaces and interfaces

Exemple : superalliages

Confinement

Misfit

Multi-phases

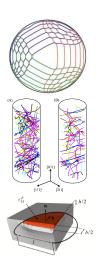
FEM and DD simulation coupling

Three solutions exist:

Superposition method (Vandergiessen:95):

$$\sigma_{dis} = \sigma_{dis \, inf} + \sigma_{CL}$$

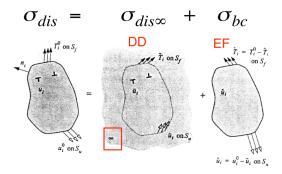
Discrete-continuous model (Lemarchant:01): Here a DD simulation is used instead of the FEM constitutive plastic law.



DD + FEM : Boundary value problem 1

Superposition principle

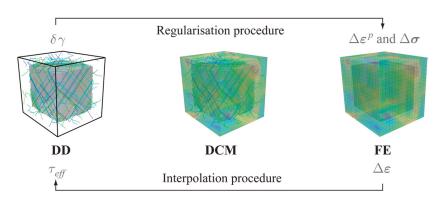
1995 -> van der Giessen, Needleman et al. (2D) -> 3D Fivel, Weygand



Dislocation singularities are moved to the surface Stresses must be interpolated in the volume

DD + FEM : Boundary value problem 2

The Discrete - Continuous Model (DCM)



- Introduction
- Discrete Dislocation Dynamics Simulations (DD)
- Main ingredients in DD simulations
- 4 DD : Boundary conditions
- Simple examples