DE LA RECHERCHE À L'INDUSTRIE

Modélisation atomique du vieillissement des aciers

Frédéric Soisson CEA Saclay, Service de Recherches de Métallurgie Physique C.-C. Fu, E. Martinez (LANL), M. Nastar, J.-B. Piochaud (UMET), O. Senninger

www.cea.fr

Transformations diffusive dans les aciers

- Transformations de phases diffusives dans les alliages : précipitation d'une seconde phase dans une solution solide, mise en ordre, ségrégation aux surfaces, joints de grains, etc...
 - vieillissements thermiques (recuits isothermes)
 - alliages sous irradiation (système « forcé »)
- « Diffusives » : contrôlées par la migration thermiquement activée des atomes, généralement par des mécanismes impliquant des défauts ponctuels.
- La question centrale : quel est le chemin cinétique ?

 où va-t-on ? vers quel état final : équilibre thermodynamique ?
 état-stationnaire (système forcés) ?
 - en passant par où ? par quelles configurations intermédiaires ?
 - en combien de temps ?
- Applications : quelques études de cas dans les aciers ferritiques (cc)
 - Précipitation du cuivre dans la fer
 - Précipitation du chrome dans le fer
 - Particularité du fer: rôle des interstitiels directs (C, N, O), rôle du magnétisme
 - Alliages sous irradiation

De nombreux modèles phénoménologiques
 Germination-croissance, coalescence, décomposition spinodale
 Cinétiques de mise en ordre
 Modèles de ségrégation (thermodynamiques et cinétiques)

 Démarche alternative : une description atomique (du saut des atomes et des défauts ponctuels à l'évolution de la microstructure)

simulations AKMC (Atomistic Kinetic Monte Carlo)

à l'échelle nanométrique \rightarrow (50 nm)³

Couplage avec d'autres méthodes

en amont: paramétrage sur calculs *ab initio*, potentiels semi-empiriques, données expérimentales (thermodynamiques et diffusion)

en aval : - modèles mésoscopiques (dynamique d'amas, O-KMC, champ de phase)

- modèles plasticité, de comportements mécaniques

Modèles cinétiques classiques

• Précipitation d'une phase secondaire dans une solution solide $A_{1-c}B_c$ Enthalpie libre de mélange : g_m

Deux modes de précipitation (ou deux régimes cinétiques):

Germination-croissance / Décomposition spinodale

Modèles classiques : Germination-croissance

$$\Delta G(R) = \frac{4}{3}\pi R^{3}\Delta G_{p} + 4\pi R^{2}\gamma$$
 γ : énergie libre d'interface
 $\Delta G_{p} \propto -k_{B}Tln(c_{0}^{\alpha} / c_{eq}^{\alpha})$: force motrice
Rayon critique: $R^{*} = \frac{2\gamma}{\Delta G_{p}}$ Barrière: $\Delta G^{*} = \frac{16}{3}\frac{\pi\gamma^{3}}{(\Delta G_{p})^{2}}$
Taux de germination: $J = \frac{dN_{p}}{dt} \propto 4\pi R^{*}D_{B}C_{B}\exp\left(-\frac{\Delta G^{*}}{k_{B}T}\right)$
• Croissance $R - R_{0} \Box \sqrt{2D_{B}t}\frac{c_{0}^{\alpha} - c_{eq}^{\alpha}}{c_{eq}^{\beta} - c_{eq}^{\alpha}}$
• Coalescence $R^{3} - R_{0}^{3} = \frac{8D_{B}V_{at}c_{eq}^{\alpha}\gamma}{9k_{B}T}t$

Simulation Monte Carlo

CEA | F. Soisson

Modèles classiques : Décomposition spinodale

• John Cahn (1963) :

$$\Delta G = \int_{V} \left\{ g(c) - g(c_0) + K^* (\nabla c)^2 \right\} dV$$

évolution d'un profil de composition sinusoïdal de *faible amplitude* $c(x,t) = c_0 + A(t) \sin kx$ avec $k = \frac{2\pi}{\lambda}$ $R(\lambda)$ $R(\lambda)$ $R(\lambda)$ A_c A_c A_m $A_c = 2\pi \sqrt{\frac{2K^*}{(\frac{\partial^2 g}{\partial c^2})_{c_0}}}$ $\lambda_m = \sqrt{2}\lambda_c$

- Les modèles classiques ont des limites importantes mais:
- ils sont beaucoup plus rapides que les méthodes atomiques, ils sont couramment utilisés dans les applications industrielles

- ils mettent en évidence les propriétés, les paramètres qui contrôlent les chemins cinétiques force motrice, coefficients de diffusion, énergies d'interface

Diffusion à l'échelle atomique

A l'échelle atomique, tout est plus simple :

 Quelques mécanismes de diffusion élémentaires : sauts de lacunes (dans Fe: éléments substitutionnels Fe, Cu, Cr, Mn, Ni, ...) sauts d'interstitiels directs (C, O, N dans le fer)

• Les fréquences de sauts thermiquement activées

dépendent de l'environnement atomique local

- Peuvent être calculées à partir :
- de méthodes *ab initio* (ΔH_{mig} à OK, fréquences d'attaque)
- de potentiels empiriques ou semi-empirique (EAM, MEAM, BOP...)
- d'interactions effectives sur réseau rigide : interactions de paires $g_{AA}^{(n)}, g_{AB}^{(n)}, g_{BB}^{(n)}$ entre atomes (n^{ème} voisins)

entre atomes et défauts $g^{\scriptscriptstyle(n)}_{\scriptscriptstyle AV}$, $g^{\scriptscriptstyle(n)}_{\scriptscriptstyle BV}$

interactions de multiplets (g_{IJK} , g_{IJKL} , etc...)

- Dynamique moléculaire: pas de temps fixé par les vibrations du réseau → trop lent (< 1 ns)
- Méthodes Monte Carlo atomiques : on suit tous les atomes, évènement élémentaire : saut d'un défaut Typiquement: systèmes de quelques 10⁶-10⁷ atomes 10¹¹ à 10¹³ sauts de défauts -> temps physique très variable
- Méthodes Monte Carlo mésoscopiques (Object-KMC, Event-KMC): on suit certains objets évènement élémentaire: réaction entre objets
- Dynamique d'amas: idem, sans corrélation spatiale

$$J_i = -\sum_j L_{ij} \nabla \mu_j$$

Le chemin cinétique dépend...

 des fréquences de sauts barrières de migration:

des concentration en défauts ponctuels

- simulations Monte Carlo avec un nombre de défauts constants (e.g. N_{ν} =1) nécessitent une mise à l'échelle du temps :

$$t_{MC} = \frac{1}{\sum_{i} \Gamma_{i}} \longrightarrow t = t_{MC} \frac{\overline{c}_{V}^{MC}}{\overline{c}_{V}^{eq}}$$

$$\overline{c}_{V}^{eq} \text{ évolue au cours de la transformation de phases}$$

- simulations Monte Carlo avec les mécanismes de formation et d'élimination des défauts

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 9

Physical time scale and point defect concentrations

• The kinetic pathways depends on the migration barriers but also on the point defect concentrations : simulations with a constant number of point defects (e.g. $N_V = 1$) require a time rescaling

$$t = t_{MC} \frac{\overline{C}_{v}^{MC}}{\overline{C}_{v}^{eq}}$$
 with $\overline{C}_{v}^{MC} = N_{v} / N$

The time correction factor *is not constant*

 $\overline{C_v}^{eq}$ usually evolves during the phase transformations

• For any local environment (
$$\alpha$$
): $t = t_{MC} \frac{C_V^{MC}(\alpha)}{C_V^{eq}(\alpha)}$ with $C_V^{eq}(\alpha) = \exp\left(-\frac{E_V^{for}(\alpha)}{kT}\right)$

also provides an estimation of $\overline{C}_{V}^{eq} = \overline{C}_{V}^{MC} \frac{C_{V}^{eq}(\alpha)}{C_{V}^{MC}(\alpha)}$ during the phase transformation

• A convenient choice for phase separation : pure A or pure B

$$E_v^{for}$$
 (pure A) = $-\frac{z}{2}\varepsilon_{AA} + z\varepsilon_{AV}$

• Only valid when vacancy concentration remains at equilibrium. Alternative approach : AKMC with formation and annihilation mechanisms (sources/sinks)

One simple example

• Phase separation in an A₉₅-B₅ alloy :

AKMC simulation with 1 vacancy T = 573 K (0.6 T_c)

 $\overline{C}_{V}^{eq} = \overline{C}_{V}^{MC} \frac{C_{V}^{eq}(A)}{C_{V}^{MC}(A)} = \overline{C}_{V}^{MC} \frac{C_{V}^{eq}(B)}{C_{V}^{MC}(B)}$

- Strong variation of the time rescaling factor
- Gibbs-Thomson effect : $\langle C_{v}^{eq} \rangle$ with ref. A slightly $\geq \langle C_{v}^{eq} \rangle$ with ref. B • Application: vacancy concentration in non-ideal concentrated solid solutions
- Application: vacancy concentration in non-ideal concentrated solid solutions (Mean-Field models, M. Nastar)

Méthodes Monte Carlo

Système dans des configurations (i), d'énergies E_i
 à l'équilibre thermodynamique (ensemble canonique NVT), la probabilité d'une configuration i est :

$$P_i^{eq} = \frac{1}{Z} \exp\left(-\frac{E_i}{k_B T}\right) \quad \text{fonction de partition} : Z = \sum_i \exp\left(-\frac{E_i}{k_B T}\right)$$

• La valeur moyenne d'une grandeur A est donnée par :

Valeur moyenne :
$$\langle A \rangle = \frac{\sum_{i} A_{i} \exp\left(-\frac{E_{i}}{k_{B}T}\right)}{\sum_{i} \exp\left(-\frac{E_{i}}{k_{B}T}\right)}$$
 (1)

- Si on connaît Z, on peut calculer tout les potentiels d'équilibre thermodynamique par exemple l'énergie libre : $F = -k_B T \ln Z$
- Problème : sauf dans des cas très particuliers, on ne sait pas calculer exactement Z...

Monte Carlo par échantillonnage direct

- Méthodes Monte Carlo: échantillonnage statistique sur un nombre fini de configurations (i)
- Échantillonnage direct: N configurations (i) choisies aléatoirement et estimation directe des moyennes:

• En général il existe un nombre gigantesque de configurations et seule une petite proportion ont un poids non négligeable : cette méthode est complètement inefficace...

Echantillonnage par importance (« Importance Sampling »)

- Tirage des configurations avec une probabilité proportionnelle à leur poids de Boltzmann P_i^{eq} (« Importance Sampling »)
- Dans ce cas, sur *N* configurations générées : $\langle A \rangle = \frac{1}{N} \sum_{i=1,N} A_i$

Figure 3.1: Measuring the depth of the Nile: a comparison of conventional quadrature (left), with the Metropolis scheme (right).

• La méthode la plus courante est celle de Metropolis. On peut en donner une interprétation dynamique, à partir de *l'équation pilote*.

Interprétation Dynamique - Equation pilote

 Un système parcourt son espace des phases : configurations *i*, probabilités de transitions par unité de temps W_{ij}

• L'équation pilote donne l'évolution des probabilités d'occupation des différentes configurations

$$\frac{dP_i}{dt} = \sum_j \left[-W_{ij}P_i(t) + W_{ji}P_j(t) \right]$$

On parle de « processus Markoviens »: les probabilités W_{ii} ne dépendent que de i et j (pas de mémoire)

• Si le processus est ergodique (toutes configurations accessibles) et vérifie la condition de bilan détaillé :

$$\frac{W_{ij}}{W_{ji}} = \frac{P_j^{eq}}{P_i^{eq}} = \exp\left(\frac{E_i - E_j}{k_B T}\right)$$

le système évolue vers son état équilibre thermodynamique:

$$P_i(t) \rightarrow P_i^{eq} = \frac{1}{Z} \exp\left(-\frac{E_i}{k_B T}\right)$$

Equation pilote: remarques

• Dans les systèmes forcés (sous irradiation, fatigue, broyage, etc...) certaines transitions ne vérifient pas la condition du bilan détaillé: le système n'évolue pas vers un état d'équilibre thermodynamique

• Pour étudier *les propriétés d'équilibre* thermodynamique, on peut choisir n'importe quel mécanisme de transitions $i \rightarrow j$ avec W_{ii} vérifiant le bilan détaillé.

En pratique on peut choisir celui qui converge en un minimum de temps de calcul (exemples: échanges entre deux atomes éloignés, échanges entre groupes d'atomes, etc...).

• Pour simuler *le chemin cinétique* et pour *les états stationnaires des systèmes forcés*, les mécanismes de transition et les probabilités *W_{ii}* correspondantes doivent être aussi réalistes que possible

exemple: sauts de lacunes avec une barrière de migration réaliste, d'interstitiels avec une configuration et un mécanisme de diffusion réaliste, mécanismes de mélange balistique

Algorithme de Metropolis (1953)

(1) Configuration initiale (*i*) (2) Choix d'une transition $i \Box j$ et calcul de $\Delta E \Box$ $W_{ij} = \tau^{-1} \exp\left(-\frac{\Delta E}{k_B T}\right)$ (3) Tirage d'un nombre aléatoire $0 \le \text{RND} < 1$ (4) Si $\Delta E \le 0$: réalisation de la transition Si $\Delta E > 0$: réalisation de la transition si $\exp\left(-\frac{\Delta E}{k_B T}\right) > \text{RND}$

• Pour les *propriétés d'équilibre* (par exemple pour construire un diagramme de phase), on peut choisir des échanges directs entre atomes et

 $\Delta E = E_i - E_i$ (énergie finale – initiale)

• Pour *une cinétique* avec diffusion, il faut choisir un mécanisme réaliste (par exemple des sauts de lacunes) avec :

 $\Delta E = E_{col} - E_i$ (barrière de migration)

• Principal inconvénient: avec $\Delta E \sim 0.5$ à 1 eV, la plupart des transitions sont rejetées à basse température (< 1000 K)

Algorithmes à temps de résidence

(Young et Elcock 1966, Bortz-Kalos-Lebowitz 1975)

- (1) Configuration initiale (i)
- (2) Calcul des ΔE pour les N_t transitions $i \Box j$ possibles
- (3) Temps de résidence moyen dans la configuration (i)

Nécessite le calcul de toutes les W_{ij} , mais une transition est réalisée à chaque pas Avantageux quand N_t est petit (ex: diffusion par défauts ponctuels)

Précipitation du cuivre dans le fer

- Le cuivre est peu soluble dans le fer-□ (< 2% à 850°C)
 - précipitation
 - durcissement

Problème pour les aciers de cuve des centrales nucléaires

- Fer pur : cubique centré
- Cuivre pur : cubique à faces centrées
- Séquence de précipitation CC (R < 2 nm) \rightarrow 9R \rightarrow 3R \rightarrow FCC
- Les petits précipités (R < 2 nm) sont:
- complètement cohérents
- très riches en cuivre

Fig. 4. Microstructure of the alloy after 840 s of iron ion irradiation. Only copper atoms are represented. A high number density of copper enriched clusters is observed.

METHR

Cea

Précipitation du cuivre dans le fer : calculs DFT

Propriétés des alliages fer-cuivre

Configurations CC riches en fer et en cuivre

- faible solubilité mutuelle $C_{\alpha}^{eq} \propto e^{2}$

$$xp\left(-\frac{E_{Cu}^{sol}(Fe)}{k_{B}T}\right)$$

- forte différences pour les énergies de formation des lacunes (> 1 eV)
- forte attraction Cu-V (1^{ers} et 2^{èmes} voisins)

AKMC: interactions de paires sur réseau rigide

(1^{ers} et 2^{èmes} voisins)

- reproduit bien les propriétés des alliages dilués
- propriétés FeCu and CuFe symétriques
- sous-estime l'interaction Cu-V dans Fe

Code SIESTA

Density Functional Theory (DFT) Generalized Gradient Approximation Volume constant – 54 et 128 atomes

	Energy (eV)	DFT		
	$AKMC_{Fe}$ (*)	4.280	4.280	-
Γ	$E_{Cu}^{\rm sol}({\rm Fe})$	0.484	0.545	
Γ	$E_{CuCu}^{b(1)}(\mathrm{Fe})$	0.150	0.121	
	$E_{CuCu}^{b(2)}(\mathrm{Fe})$	0.032	0.021	dans Fe
Γ	$E_{CuV}^{b(1)}(\mathrm{Fe})$	0.174	0.126	
	$E_{CuV}^{b(2)}(\mathrm{Fe})$	0.185	0.139	
Γ	$E_V^{for}(\mathrm{Fe})$	2.179	2.179	_
	E_{Cu}^{coh} (*)	3.540	3.540	
Γ	$E_{Fe}^{\rm sol}({ m Cu})$	0.768	0.545	
Γ	$E_{FeFe}^{b(1)}(Cu)$	0.399	0.121	
	$E_{FeFe}^{b(2)}(\mathrm{Cu})$	0.265	0.021	dans Cu
	$E_{FeV}^{b(1)}(\mathrm{Cu})$	-0.063	-0.118	
	$E_{FeV}^{b(2)}(\mathrm{Cu})$	-0.047	-0.006	
Γ	$E_V^{for}(Cu)$	0.882	0.882	

(*) experimental values.

Coefficients de diffusion

Le passage des fréquences de sauts aux coefficients de diffusion n'est pas trivial, notamment à cause des effets de corrélation

•Cas simples : des modèles fiables (théorie de la diffusion, M. Nastar)

- autodiffusion (Fe dans Fe)

$$D_{Fe^*}^{Fe} = a^2 f_0 C_V (Fe) \Gamma_0$$

facteur de correlation $f_0 \square 0.727$ (CC)

- diffusion d'impureté (Cu dans fer pur)

$$D_{Cu^*}^{Fe} = a^2 f_2 \Gamma_2 C_V (Fe) \frac{\Gamma_4}{\Gamma_3}$$

facteur de correlation $f_2 = f(\Gamma_0, ..., \Gamma_6)$ ΔH_2^{mig} petite $\rightarrow f_2 \ll 0$

•Monte Carlo : $D_i = \frac{\left\langle \Delta R_i^2 \right\rangle}{6t}$

 ΔR_i^2 : déplacement quadratique moyen

	Migration barrier (eV)			
Jump	SIESTA	VASP	RLM	
Γο	0.68	0.64	0.68	
Γ_2	0.59	0.56	0.57	
Γ_3	0.64	0.60	0.64	
Γ_4	0.64		0.65	
Γ'_3	0.70	0.67	0.68	
Γ'_4	0.56		0.56	
Γ_3''	0.63	0.62	0.68	
Γ_4''	0.53		0.56	
Γ ₅	0.74		0.78	
Γ_6	0.55		0.64	

Précipitation du cuivre dans le fer

Fe - 1.34at.%Cu – recuit isotherme à 500°C

•Un fort piégeage des lacunes par les amas de cuivre

DFT:
$$E_v^{for}(Fe) = 2.2 \text{ eV} >> E_v^{for}(BCC - Cu) = 0.9 \text{ eV}$$

•Bon accord avec les cinétiques expérimentales mais limité aux premiers stades de précipitation (germination et croissance)

•Précipitation d'amas de cuivre pur (pour R > 0.5 nm)

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 22

Précipitation du cuivre dans le fer

Fe - 1.34at.%Cu – recuit isotherme à 500°C

•Un fort piégeage des lacunes par les amas de cuivre

DFT:
$$E_V^{for}(Fe) = 2.2 \text{ eV} >> E_V^{for}(BCC - Cu) = 0.9 \text{ eV}$$

 Bon accord avec les cinétiques expérimentales mais limité aux premiers stades de précipitation (germination et croissance)

•Précipitation d'amas de cuivre pur (pour R > 0.5 nm)

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 23

Mobilité des amas de cuivre

 Dans les théories classiques de germination, croissance, coalescence: émissions/absorptions d'atomes de soluté (Cu) isolés

• **Simulation AKMC** (T = 500°C):

les amas sont mobiles et peuvent réagir entre eux (coagulation)

Coefficients de diffusion des amas

Échanges directs (pas de lacunes, Binder et al) Pour les grandes tailles $\frac{D_n}{D_1} \propto n^{-4/3}$

Avec une diffusion par lacunes :

$$\frac{D_n}{D_1} \propto \frac{\frac{C_V^{\text{int}}}{C_V^{Cu}}}{\frac{C_V^{Cu}}{C_V^{Cu}}} \frac{\Gamma_V^{\text{int}}}{\Gamma_V^{Cu}} n^{-4/3}$$

Cea Dynamique d'amas

• Evolution de le concentration des amas de *n* soluté (**amas immobiles**) :

$$\frac{dC_n}{dt} = J_{n-1\rightarrow n} - J_{n\rightarrow n+1}$$

$$J_{n\rightarrow n+1} = \beta_n C_1 C_n - \alpha_{n+1} C_{n+1}$$
taux d'absorption : $\beta_n = 4\pi (r_n + r_1) D_1 / \Omega$
taux d'emission : $\alpha_{n+1} = \beta_n \exp\left[-\frac{A}{k_B T} \left(\gamma_1 + \gamma_n n^{2/3} - \gamma_{n+1} (n+1)^{2/3}\right)\right]$
Energie libre d'interface ajustée sur simulations MC cinétique aux temps longs
$$\int_{0}^{0} \frac{100^{\circ}C}{10^{\circ} 10^{\circ} 10^$$

CEA | F. Soisson

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 25

Dynamique d'amas

• Dynamique d'amas sans mobilité d'amas (Golubov et al, 2000; Christien et al, 2004)

reproduit bien les cinétiques expérimentales mais avec : D_{Cu} >> D_{Cu} (AKMC)

• Dynamique d'amas avec mobilité d'amas (T. Jourdan, 2010)

meilleur accord avec les simulations AKMC et les expériences

- Autres approches :
 - Event based KMC (T.Jourdan, 2010)
 - Stochastic Statistical Theory (Vaks and Khromov, 2011)

• Un alliage modèle des aciers ferritiques et ferrito-martensitiques (7-14%Cr), pour les futurs réacteurs

nucléaires (Génération IV et fusion)

- Problèmes potentiels :
- la précipitation α' (ou décomposition $\alpha \alpha'$): un vieux problème, la « fragilisation à 475°C » (Reidrich and Loib, 1941 Fisher et al. 1953)
- appauvrissement en chrome aux joints de grains (\rightarrow corrosion, fragilisation)
- Des propriétés magnétiques originales qui affectent les propriétés thermodynamiques et cinétiques des alliages fer-chrome

Propriétés thermodynamiques

Un comportement original

Calculs CPA (Hennion, J. Phys. F, 1983) Expériences de diffusion de neutrons et de résistivité (Mirebeau et al, 1984)

moins de 10%Cr : tendance à l'ordre plus de 10%Cr : tendance à la démixtion

• Lié au interactions magnétiques

La tendance à l'ordre s'explique par les frustration qui résultent des couplages Fe-Fe ferromagnétique Cr-Cr antiferromagnétique Fe-Cr antiferromagnétique

Fe-Cr alloys : effective pair interaction model

• Interactions de paires constantes : $h_{FeFe}^{(n)}$, $h_{FeCr}^{(n)}$, $h_{FeCr}^{(n)}$, $\rightarrow \Delta H_{mix}$ et diagramme de phase symétriques • Interactions de paires dépendant de la composition: $h_{FeCr}^{(n)}(X_{Cr})$ ajustée sur calculs DFT de ΔH_{mix} à OK

• Contribution magnétiques et vibrationnelles: dépendance en température, ajustée sur $T_{\alpha-\alpha'}$ (exp)

 $\Delta H = \Omega(x)x(1-x)$

$$g_{FeCr}^{(n)}(x,T) = h_{FeCr}^{(n)} - Ts_{FeCr}^{(n)}$$
 , avec $n = 1,2$

PWSCF, GGA-PAW

- Special Quasi-random structures (SQS)
- Ordered structures
- Pair interaction model

$$\Omega(x) = \sum_{n} \frac{Z_n}{2} \left[h_{FeFe}^{(n)} + h_{CrCr}^{(n)} - 2h_{FeCr}^{(n)}(x) \right]$$

CEA | F. Soisson

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 29

Alternative : potentiels empiriques

• G. Bonny et al (2011) – potentiel 2BM

Reproduit bien les limites de solubilité (sauf à haute T)

Entropie de vibration et propriétés des défauts ponctuels raisonnables

• Autres approches : interactions de multiplets (Cluster expansion « classique ») cluster expansion magnétique (M. Lavrentiev et al, JNM 2009)

Cea Propriétés de diffusion: barrières de migration

- interactions de paires ajustées sur des calculs DFT à OK(enthalpies de formation des lacunes, barrières de migration)
- Auto-diffusion

 $D_{A^*}^A = a^2 C_V(A) f_0 \Gamma_0$

• Diffusion d'impureté

(Modèle de LeClaire)

$$D_{B^*}^{A} = a^{2}C_{V}(A)\frac{\Gamma'_{4}}{\Gamma'_{3}}f_{2}\Gamma_{2}$$

	Fe (ferro)	Cr (non magnetic)	Cr (antiferro)
ΔE_V^{for}	2.18	(2.33)	2.48
ΔE_V^{mig}	0.69	0.78	1.25
Q	2.87	3.11	3.73
	exp: 2.91	exp: 3.2-3.6 (at low T)	

	in Fe (ferro)		In Cr (non magnetic)	
	DFT	AKMC	DFT	AKMC
ΔE ₀	0.69	0.69	0.78	0.78
ΔE ₂	0.57	0.57	0.70	0.70
ΔE ₃	0.64	0.77	0.59	0.69
ΔE ₃ '	0.65	0.66	0.61	0.81
ΔE ₃ ''	0.66	0.66	0.58	0.81
ΔE_4	0.64	0.78	0.71	0.67
ΔE ₄ '	0.69	0.67	0.80	0.77
Δ Ε ₄ ''	0.67	0.67	0.77	0.77
∆e₅	0.74	0.68	0.73	0.80
Δe ₆	0.74	0.68	0.80	0.78

Alliages Fe-Cr (dilués) : coefficients de diffusion

Entropies de vibration (Fe ferromagnétique) :

 $\Delta S_{V}^{for}(Fe) = 4.1k_{B} \quad (DFT, Lucas \& Schaüblin, 2009)$ $\Delta S_{V}^{mig}(Fe) = 2.1k_{B} \quad (Athènes \& Marinica, 2010)$

 Accélération lors de la transition ferro-paramagnétique → corrections des barrières, ajustées sur les données expérimentales (coefficients de diffusion de traceurs, coefficients d'interdiffusion)

coefficients de diffusion de traceurs dans le fer pur :

Alliages Fe-Cr : coefficients d'interdiffusion

[1] Braun & Feller-Kniepmeier, 1985 [2] Jönsson 1995

- pas de données expérimentales en dessous de 900K
- Les coefficients d'interdiffusion diminuent rapidement avec la teneur en chrome
- il est important de bien prendre en compte la concentration d'équilibre des lacunes

Alliages Fe-Cr : coefficients d'interdiffusion

[1] Braun & Feller-Kniepmeier, 1985 [2] Jönsson 1995

- pas de données expérimentales en dessous de 900K
- Les coefficients d'interdiffusion diminuent rapidement avec la teneur en chrome
- il est important de bien prendre en compte la concentration d'équilibre des lacunes

Cinétiques de décomposition α-α' : AKMC vs 3DAP

Fe-20%Cr T = 500°C

 \mathbb{C}

AKMC (E. Martinez et al. PRB2012) 3D atom probe (Novy et al, JNM 2009)

Cinétiques de décomposition α-α' : AKMC vs 3DAP

Fe-20%Cr T = 500°C décomposition en régime de nucléation croissance

L'évolution de la composition des précipités α' est plus rapide que celle mesurée en sonde 3D.

CEA | F. Soisson

Small Angle Neutron Scattering experiments (a) Fe₆₀Cr₄₀ • Expériences de diffusion de neutrons aux petits angles Ta= 540 °C 1000 (DNPA) 800 INTENSITY 20 30 ENSI 500°C: Bley (1992) T (°C) 600 a' 540°C: Furusaka et al. (1986) 400 200 0.20 0.30 Q(A⁻¹) 0.40 0.0 Fe 0.10 0.50 0.2 0.4 0.8 0.6 1.0 С Сг 10 c=0.2 0.3 ref. 5 0.35 0.4 0 ref. 4 0.5 0.6 ₪ q_m (nm⁻¹) 500° C \odot 540° $\propto t^{-0.2}$ 0.1 100 0.1 10 1000 1 t (h)

Pas d'effet significatif de la teneur en Cr Mais une très forte accélération entre 500 et 540°C $q_m \approx t^{-0.2}$ contribution de la diffusion aux interfaces

cea

AKMC simulations Fe-40%Cr 540°C

O. Senninger et al Acta Mater. 2014

Facteur de structure

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 38

Cinétiques de décomposition α-α' : AKMC vs DNPA

• AKMC : O. Senninger et al. Acta Mater. 2014

- Transition magnétique \rightarrow accélération de la diffusion \rightarrow accélération de la décomposition au dessus de 35% Cr (chute de T_c)
- La correction des barrières permet un meilleur accord avec les expériences
- L'accélération persiste au temps longs : contribution de la diffusion aux interfaces

Cinétiques de décomposition α-α' : AKMC vs DNPA

- Le fort effet de température est en partie dû à la transition magnétique
- Le faible effet de la composition peut s'expliquer par la compétition entre l'augmentation de la force motrice et la diminution des coefficients de diffusion

Cinétiques avec potentiel empirique

• Simulations AKMC - avec le potentiel 2BM

Pareige (JAP 2009)

Bonny et al (PRB 2009)

Pas de calcul de phonons -> limite de solubilité trop faible (8% à 500°C, exp: 15%)

FIG. 9. (Color online) 3D distribution of atoms in the Fe–9 at. % Cr aged at 773 K in an 18 nm simulation box for 1.3×10^4 s. Only atoms that are inside a sphere of radius equal to 0.7 nm, which contains at least 30% of Cr, are visualized.

Ségrégation d'équilibre aux joints de grains

• DFT calculations of Cr segregation at GB (dilute alloys, Chu-Chun Fu)

Segregation energy of isolated Cr: depends on the type of GB and local magnetic environments

Preferential sites: significant increase of Cr local moment (large Fe local moment)

Cr: Δμ/μ ₀	∑3_112	∑3_111	∑5_310	
1 st layer	-0.02	0.25	0.40	
2 nd layer	0.05	-0.15	0.15	\sum
3 rd layer	0.03	-0.02	0.14	

Ségrégation d'équilibre aux joints de grains

Interaction between Cr atoms

E ^b Cr-Cr(eV)	bulk	∑5_310	∑5_310	∑5_310
		(L1, L1)	(L2,L2)	(L1,L2)
1nn	-0.32	-	-	-0.10
2nn	-0.14	-0.15	-0.12	-0.09
4nn	-0.04	0.03	0.03	-

He and C: very strong segregation (any type of GB)

Cr-Cr interaction in the bulk

 \bullet Cr-Cr repulsion (negative binding energy) due to magnetic frustrations (reduction of μ_{Cr} for 1nn and 2nn)

• Less repulsive at GBs than in the bulk

Data to parameterize effective interaction models:

Cr segregation energy becomes positive (non-segr) with increasing Cr concentration in the GB region, (wrt. isolated Cr in the bulk)

But, GB segregation is still favorable compared with concentrated Cr region in the bulk:

Typical segregation energies range from -0.06 to 0.29 $\,$ eV/Cr $\,$

Vacancy jump barrier in the GB = 0.3 eV

Cr migration barriers in GB are ongoing

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 43

22 Isothermes de ségrégation

- DFT : in the dilute limit $e_{seg} \sim 0.1 \text{ eV}$
- Beyond the dilute limit :

- $\frac{X_{Cr}^{GB}}{1 X_{Cr}^{GB}} = \frac{X_{Cr}^{bulk}}{1 X_{Cr}^{bulk}} \exp\left(-\frac{\Delta H_{seg}(X_{Cr}^{bulk})}{k_B T}\right)$ $\lim_{X_{Cr} \to \infty} \Delta H_{seg}(X_{Cr}^{bulk}) = e_{seg}$
- segregation profiles on the GB (i = 1) and neighboring layers (i = 2,3)
- e_{seg} = -0.1 eV on GB and GB±1
- <110> direction

CEA | F. Soisson

- Below 10%Cr : ordering tendency opposes the segregation
- Above 10%Cr : unmixing tendency enhances the segregation
- The change has a strong impact of the equilibrium segregation profile (≠ surface segregation)

Ségrégation avec un potentiel empirique

 Avantage: peut prendre en compte la structure atomique réelle du joint de grains, de la surface, de la dislocation, etc...

 Exemple : Terentyev et al (2011)
 Monte Carlo (équilibre) – potentiel 2BM ségrégation sur des joints de grains

Fig. 3. Concentration profiles of Cr in the Fe-5Cr bi-crystals after MMC simulations at T = 300, 600, 900 K.

CQZ**Précipitation de carbures: alliages FeNbC** (D. Gendt et al, 2001) D_{C} (interstitial) >> D_{Fe} and D_{Nb} (diffusion by vacancies) Low supersaturations **High supersaturations** Direct precipitation of NbC Transient precipitation of a metastable carbide • C $T = 950 \text{ K} - C_{\text{Nb}} = C_{\text{C}} = 0.5\%$ $T = 900 \text{ K} - C_{Nh} = C_{C} = 0.8\%$ metastable • Nb FeC 33 nmt=1,5 st=11 s t=25 sconfiguration initiale t = 30 secondes =80 s t = 1.071 s

NbC

23 nm

t = 3 minutes 30 s.

t = 1 minute

46

Alliages sous irradiation

Aux temps courts : dommage d'irradiation

• Irradiation aux ion et aux neutrons : cascades de déplacements Simulation de dynamique moléculaire dans le fer- α (E_{PKA} = 20 keV, 20 ps)

- Création de lacunes (V), d'auto-interstitiels (I) et d'amas de défauts
- A long terme :
- accélération de la diffusion \rightarrow accélération du retour vers l'équilibre thermodynamique
- élimination des défauts ponctuels en excès \rightarrow flux de solutés \rightarrow ségrégation induite par l'irradiation
- remplacements (changements de sites) → dans les alliages, mélange chimique
- Irradiation aux électrons: création ~ homogène de paires de Frenkel (V/I), pas d'amas de défauts

E.A. Calder (2010) EAM potential

Molecular Dynamics

cea

Diffusion model under irradiation

- Diffusion :
- Vacancies (V)
- Self-interstitial atoms (SIA) : <110> dumbbells
- Direct interstitials (C)
- The migration barriers are computed with a broken-bond model
- with composition and temperature pair interactions
- fitted on DFT calculations
- Formation of isolated Frenkel pairs (e- irradiation) with replacement collision sequences or small replacement cascades
- Elimination of V and SIA

CEA | F. Soisson

- by mutual recombination
- by annihilation on a perfect sink

74 or 104 nm

Acceleration of precipitation

comparison AKMC/3DAP

- AKMC simulations predict a string acceleration by irradiation (x 10⁷), due to the point defect supersaturation
- A discrepancy with 3DAP kinetics (~20-30)
- Mainly due to the sink density \rightarrow point defect concentrations

Precipitation under irradiation

 3D Atom Probe of α' precipitation, neutron irradiation in supersaturated alloys Bachhav et al Scripta Mater. 74 (2014) 48
 V. Kuksenko et al, JNM 432 (2013) 160

AKMC simulations
 Fe-18%Cr @ 563 K, 3.4 x 10⁻⁷ dpa.s⁻¹

Radiation Induced segregation

• RIS in Fe-Cr alloys: observations sonde 3D (E. Marquis Oxford)

• At technological problem : may lead to a depletion of Cr at grain boundaries

 \rightarrow Loss of corrosion resistance, embrittlement

• A non-equilibrium segregation, due to the excess of point defects:

Fluxes of point defects towards sinks (GBs, dislocations, surfaces) □ fluxes of Fe and Cr □ local change of composition

Thermodynamics of Irreversible Processes :
$$J_i = -\sum_j L_{ij} \nabla \mu_j$$

Vacancy and self-interstitial properties

Vacancies

weak Cr-V interactions low W_2 barrier :

Self-interstitials

in dilute Fe-Cr alloys : <110> dumbbells

the mixed-dumbbell is stable ($E_b = +0.02 \text{ eV}$) and has a low migration barrier

- \rightarrow preferential diffusion of Cr by SIA
- see Olsson, JNM (2009)

cea

no drag effect

AKMC: Lij coefficients

rapid migration of mixed dumbbells L_{Crl} > 0

Autres éléments d'alliages

• Dans les alliages dilués : des méthodes efficaces (SCMF)

AKMC: Radiation Induced Segregation Profiles

CEA | F. Soisson

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 57

AKMC: Radiation Induced Segregation Profiles

CEA | F. Soisson

Ecole d'été Modélisation des Matériaux Istres 19-24 Juillet 2015 | PAGE 58

Phase Field Model

J.-B. Piochaud, A. Legris, M. Nastar, FS, L. Thuinet (2015)

Phase Field

CP: 700 K

$$J_i = -\sum_j L_{ij} \nabla \mu_j$$

0.20

0.15

0.10 🖌

AKMC

AKMC: 650 K

- Pair interaction model of Fe-Cr alloys \rightarrow thermodynamic parameters (μ , κ) $\rightarrow L_{ii}$ coefficients
- Good agreement between AKMC and •
- Phase Field

0.007 dpa

0.294 dpa

when the stand the second and

- Phase Field methods are much more rapid than /
- Can take into account long range elastic effects

CEA | F. Soisson

•

Segregation profiles : equilibrium + non-equilibrium

T = 650 K, Fe-5%Cr, AKMC simulations with e_{seq} = -0.1 eV on GB and GB±1

Above 10%Cr : monotonous profiles

Radiation Induced Precipitation

Under-saturated alloys at low T : strong Cr enrichment on sinks → radiation induced precipitation

Radiation Induced Precipitation

Under-saturated alloys at low T : strong Cr enrichment on sinks → radiation induced precipitation

Conclusions

 Simulations AKMC : une description détaillée, à l'échelle atomique; des propriétés thermodynamiques et de diffusion des alliages simples (binaires, ternaires,...)

Prennent bien en compte :

- dépendance des fréquences de sauts et des barrières de migration en fonction de l'environnement local
- effets de corrélation (↔ théorie de la diffusion dans les alliages)
- les fluctuations thermiques \rightarrow processus de germination
- Mais coûteuses en temps CPU → dynamique d'amas, O-KMC/E-KMC, champ de phase et limitées aux transformations de phase cohérentes
- Les calculs ab initio calculs : permettent un ajustement fiable des paramètres énergétiques à OK plus difficile, les effets de T :
 - entropie de vibration (mélange, propriétés des défauts), surtout dans les alliages concentrés.
 - transitions magnétiques