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Usual silicate glasses

Silicates +
 polymer films

A-Si in cheap 
photovoltaic cells

Bulk Metallic Glasses

Many polymer glasses  …
Amorphous silica in transistors .. 
Monitor heat transfer,electronic conduction at small scale.

Some common amorphous systems 



  

Preparation

*) Melt and Quench

*) Chemical Vapor Deposition

*) Ion implantation 

*) local melt and quench by laser



  

General characteristics : (1) Glass transition 



  

General characteristics : (1) Glass transition 



  

General characteristics : Boson Peak 

For a cristal 
Debye DOS : g(ω)=αω2

Anomalous (excess) density
Of normal modes at low 
Frequency in comparison with 
Debye prediction



  

Generation of amorphous systems from a computer 

Amorphous system : lack of long range order (like in a liquid)

Order of magnitude for experimental cooling rates of the order of 1 K/s

Need to obtain representative defect ratios

Difficult task especially if electronic degrees of freedom are included

Use classical potentials to obtain the structure … still quench.rates are ~1010 K/s !!!

  



  

Some examples of classical potentials :

B.K.S. : Potential for silica, long range part is numerically heavy 
             Improved version for amorphous systems can include cut-off in
              the  electrostaticinteractions.
             (A.Carré et al. J. Chem Phys 127 114512 (2007) )  

S.W. :   Potential for a-Si. Can be modified to tune properties like the 
             nature of the defects and their numbers, DOS,... 

Tersoff : High melting temperature, liquid remains undercoordinated respect to experiments, 
             some weird mechanical properties

L.J. : Need to use several L..J. Parameters (σ and ε) to prevent crystal formation

EAM/MEAM : Can be used to model metallic glasses.



  

Some methods to generate amorphous samples

W..W.W. Continuous random network (covalent 4-fold, silicon like) :

Random initial positions and relaxations (for a-Si again):

Vink et al. J.Non-Cryst.Solids 282, 248(2001) uses the ART technique
Guénolé et al. Phys.Rev .B 87 045201 (2013)
France-Lanord et al. J.Phys.Condens. Matter 26 055011 (2014)

Melt and Quench for a-Si systems :

Fusco et al. Phys. Rev.E 82 066116(2010)
France-Lanord et al. J.Phys.Condens. Matter 26 055011 (2014)

Melt and Quench for SiO2 :

Sarnthein et al. Phys. Rev.B 52 12690 (1995)  (all DFT!)
Mantisi et al. Eur. Phys. J. B 85 304 (2012)
 



  

Validation, Comparison with Experiments :

a-Si, g(r) from
 melt and quench 

A-Si density of states :
Various SW models 



  

Construction of heterostructures :

Using a mask :

Study heattransfer at
c-Si /  a-Si interface

Combining potentials :

Core shell  nanowires



  

Some properties from MD :
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Self diffusion

Auto correlation of the velocities

Thermal conductivity

Shear viscosity

Stress Tensor
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Annealing at T= 2500 K with the Tersoff potential

T≃10 K Minimization (damped dynamics)
Change potential to SW, SWM1, SWM2

Annealing at 100K (few ps) followed by coordinates 
and cell minimization (elimination of residual stress)
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Tersoff : 

SW  (2body): 

SW  (3body): 

SWM1 : factor 2 on the 3 body term (favours tetrahedral local structure)
SWM2: 0.8 energy scale and factor 1.5 on 3 body term (Mousseau version for A-Si)
+ others  “SWM1 like” potentials with different values of λ
+ different quenching rates (1011 to 1014 K/s)   

MD SImulations



  

Mechanical Deformation : 

n×xy

●Successive quasi-static shear strain steps, δε
xy  

=0.001, until 30-50% deformation 

●Strain is imposed via the lattice cell parameters in periodic boundary conditions (no walls)

●Potential energy is minimized through a damped MD at 0K 

●Volume is constant 

●For each configuration a reverse step is calculated

−xy
(reverse step)



  



  

Energy Contributions

Contributions : Eel=∫ d  E plas =Erev  −Eini  E tot  =Eini  

Local contributions ?   STATIC !!



  

Identify Local Plastic Events and define 
« Plastic Activity »  

We have calculate the forward/backward strain steps : 

c iini=c i−1ini

c irev=c i1ini−
 E plas=Erev−Eini

Evaluate contributions to the plastic energy coming from local atomic terms :

We construct a local (atomic) positive defined quantity  
as the norm of the variation of the atomic energy terms  :   

 Ei
2=∑

j
[V 2

ini i , j−V 2
rev i , j]2∑

j , k
[V 3

ini i , j , k −V 3
rev i , j , k ]2

 E i
2 Is a local “measure” of plastic activity, 

invariant respect to  translations and rotations

It is coarsed grained and written on a 3D grid to find it's attractors and basins.
(Methodolgy similar to Bader charges in Quantum Chemistry)



  

Basins defined by gradient lines  

We add some criteria to select 
Plastic events among the attractors



  

Attractor examples : Link with displacement field :

Using this technique, we determine
plastic events centers.
Compare with : 
 Eshelby quadrupoles 
 localization of  coordination defects 
in the structure

Calculate size of events
Fusco et al PRE 82 06116 (2010) 



  

Size of plastic events

Plastic events tend to grow in size 
until the “Yield point”

The size of the plastic events
 are evaluated through a fit of 
 the relaxation of the local 
energy variations at short distances :

  ΔE(r) = a exp(-wr) (w gives the size)



  

Plastic energy .vs. local plastic activity



  

We have identified localized Plastic Events from atomistic  
calculations 

●To which extend  can we compare these results with  
the elasticity of continuum medium ? 

●Bridge with mesoscopic models 

●Validation, identification of important parameters to describe 
plastic behaviour 



  

Elements to describe 
plasticity in an 

amorphous system : 

“Shear Transformation Zone”

Argon Acta.Metall. 27 47 1979

Irreversible shear transformation 
(dozen of particles)Continuum mechanics : 

Elastic field due to a shear inclusion 
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Displacement field has the symmetry 
Of a field from a magnetic quadrupole

pij=
E

(1+ν)
{ϵij+νδ ij

ϵkk
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}



  

Many mesoscopic models ...

Free volume theory (Spaepen et al)

Mean Field STZ theory (Falk, et al)

Pinning/Depinning  (Vandembroucq et al)

Fluidity models (Picard et  al)

KFC-FE  models (Schuh et al)

QPD model (Perez et al)

... 

These models can give : Yield, plastic flow, plastic hardening, shear bands, complex rate
                                         dependent behaviour .. 

 
Validation at  the microscopic (atomic) scale?



  

˙ε pl(x , y , t )= n(x , y , t)
2μ τ

σ(x , y , t)

G.Picard et al 
PRE 71 010501 (2005)

Fluidity models :         

                                      Eshelby-like stress redistribution upon event 
                                      Fixed stress threshold 
                                      Visco-elastic plastic rate : 

 n(x,y,t) depends on characteristic times when it switches 
 from elastic (n=0) to plastic (n=1) or vice-versa. 

KMC-FE models :   Define  STZs on a FE grid
                                     Use an activation rates that depends on 
                                     Typical STZ barrier and local stress : 
                                     
                                      Eshelby-like stress redistribution upon event 

ṡ=0 exp 
− F00

kT
Homer et al

Acta Mater. 57 2823 (2009)

σ̇ (x , y , t )=μ γ̇+2μ∫G (x ' , y ' , x , y) ˙ε pl(x ' , y ' )

Pinning /Depinning  models : stress(σ) = elastic contrib. (μγ ) + stress from
                                                                 Local event G(x,y,x',y')            
                                      Eshelby-like stress redistribution upon event 
                                      Local (random)  stress threshold                                     
J.C. Baret et al. 
PRL 89 195506 (2002)



  

Fitting displacements with 
Eshelby inclusions  

Least  square fit from the difference of MD displacements and a sum 
of Eshelby inclusions centered on detected plastic events 

Variational parameters : Transformation strain tensor (6 components)

Other parameters : inclusion radius, average elastic constants

Rules : use homogeneous  infinite body solutions, 
             Spherical inclusions 
            do not fit regions inside inclusions 
             Use events that represent more than 90% of plastic activity 

Technique : Damped dynamics algorithm 



  

Results on events extracted from the simulation
and studied  alone using a small rescaling factor :  ::

●Symmetry and power law correspond to shear Eshelby event 



  

Nature of the plastic events 

●Shear inclusions  describe well the overall structure of the displacement field 
with characteristic cross shaped structures. 

●Events centers do correspond to detected plastic events 

●Max. errors are found close to the centers



  

Typical errors & symmetry

Rsym : ratio between (sum of displacements square due to diagonal components of ɛT  )  
                            and (sum of displacements square due to shear components of  ɛT  )

Rprec : ratio between ( final objective function)  and ( initial objective function)

●Shear components dominate, more for SW than SWM
●Qualitative agreement between MD and Eshelby fit is obtained 
●  Can we achieve a more quantitative agreement ? 



  

Distributions of Eshelby 
Transformation Tensors

ε V  represents the robust output of the fit



  

Stress-Strain relations evaluated from the Eshelby  shear inclusions  ::

●Homogeneous strain correction to match BC
●1 adjustable parameter α 

δσxy=δσ xy
el+δσ xy

plas

δσ xy
el=G (ϵ)δ ϵxy

δσ xy
plas=∑e

σ xy
Es(e)

δσxy=δσ xy
el+αδσxy

plas



  

Stress-Strain relations evaluated from the Eshelby  shear inclusions  ::

δσxy=δσ xy
el+δσ xy

plas

δσ xy
el=G (ϵ)δ ϵxy

δσ xy
plas=∑e

σ xy
Es(e)

●Continuum elastic solutions of  shear inclusions describe well the development of plasticity
●… providing we evaluate their intensity and number, and the use of a variableG
●Variable poisson parameter and precise Eshelby radius are not crucial
●No need of diagonal components to represent shear stress 
●What is the origin of the parameter α close to 2 ? 

δσxy=δσ xy
el+αδσxy

plas



  

Local Contributions   ::

Spatial shear  stress
 redistribution



  

Volume and pressure Variations 
   

Diagonal elementsof Eshelby transformation strain tensors :

●Volume decrease around SW plastic event
●Volume increase around SWM plastic event
Large variations at band formation ???

Consistent with atomistic structure around plastic event :

SW

SWM

● Explained by 3 body param
●Linked to relative brittle/ductile 
behaviour of SW and SWM  
●Hard sphere plasticity fails at 
atomic scale
●Inclusion model quantitative respect
to pressure ?



  

Volume and pressure Variations 
   

Inclusion mode lis no more accurate  : 

Reasons : elastic term more difficult to evaluate 
                 Many sets of inclusions give similar accuracy, especially with lot of inclusions
                 Large jumps are due to numerical artefact  

δ P=δ Pel+αδ P plas

Volume and pressure Variations 
   



  

Adding  pressure in the fit :    



  

Conclusions and Perspectives    

●Main features of plasticity can be described through Eshelby inclusion representation

●Allow better comparison between exp./theory.

●Important parameter here is mainly the average shear modulus,
for a sheared bulk the size of events and their shapes are not crucial

●Small scale details  determine the occurrence of events but once they are  
generated these events are well described by continuum medium elasticity.

●Boundary conditions matter but can be discussed even using a simple infinite elastic
body solutions. For any quantitative model they largely affect the results and should
be considered.  
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