Modélisation des matériaux carbonés

Y. Magnin

contact@yann-magnin.fr; http://www.yann-magnin.fr

A l'origine de l'état solide...

Van der Waals Covalente Ionique Métallique

Liaisons interatomiques à l'origine d'une énergie de cohésion

Une **description fiable** des énergies de liaison par des **potentiels** permet la modélisation de phénomènes variés

Modéliser la liaison chimique permet l'interprétation de phénomènes collectifs (Transitions de phases, Phonons, Diffusion, ...)

Liaisons Covalentes

Energie de cohésion par mise en commun d'un ou plusieurs e⁻ de valence

Liaisons directionnelles

Les molécules liées par covalence tendent à adopter des formes caractéristiques possédant des angles de liaison spécifiques

O se lie à 2H pour compléter sa couche 2p

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

イロト イポト イヨト イヨト

Liaisons Métalliques

Energie de cohésion par mise en commun d'e⁻ de valence, formation d'une bande

Large nuage d'e⁻ délocalisé, forte mobilité électronique

Liaisons non dirigées

Liaisons Métalliques

Energie de cohésion par mise en commun d'e⁻ de valence, formation d'une bande

Large nuage d'e⁻ délocalisé, forte mobilité électronique

Liaisons non dirigées

Delta (8) Molecular Orbital (MO) from Two d xy Atomic Orbitals

Contrairement aux liaisons covalentes, les e⁻ sont libres de se déplacer dans le volume

A.L. Companion, Chemical Bonding, McGraw-Hill, New York, 1964

-

Liaisons Ioniques

Transfert de charge (e⁻ de valence) d'une espèce électropositive vers une espèce électronégative

Les ions formés interagissent par des forces électrostatiques, interactions Coulombiennes

Liaisons de Van der Waals

Interaction de 2 atomes d'électronégativité différente

Déformation d'un nuage électronique, répartition inégale des e

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つへで

L'empilement des feuillets de graphène du graphite interagissent grâce à des liaisons de VdW

-

Carbone

Selon les conditions thermodynamiques, le carbone présente différentes phases cristallographiques

3

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Formes allotropiques du carbone

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

э

Formes allotropiques du carbone

- a. Diamant
- b. Graphite
- c. Lonsdaléite
- d,e,f. Fullerènes
- g. Carbone amorphe
- h. Nanotube

-

Remplissage électronique du carbone

Le carbone a 6 e⁻

Selon le remplissage de klechkowski :

イロト イポト イヨト イヨト

э

Métaux de transitions

Liaison par recouvrement des **orbitales d**

Bande d étroite

Faible hybridation sp-d

dπ-dπ

pπ-dπ

◆□▶ ◆□▶ ★ □▶ ★ □▶ - □ - つくぐ

Métaux de transitions

Liaison par recouvrement des orbitales d

Bande d étroite

Faible hybridation sp-d

Réactif avec le carbone : Formation de **carbures** par recouvrement des orbitales p-d

Pouvoir catalytique :

Support pour la croissance de **graphène** (CVD) Catalyseur pour la croissance de **nanotubes de carbone**

Potentiel empirique : Lennard-Jones

Potentiel **de paire** : partie répulsive + partie attractive : $E(r_{ij}) = E_{rep}(r_{ij}) + E_{coh}(r_{ij})$

$$E(r_{ij}) = 4\epsilon \left(\left(\frac{\sigma}{r_{ij}} \right)^{12} - \left(\frac{\sigma}{r_{ij}} \right)^6 \right)$$

$$E_{tot} = \frac{1}{2} \sum_{i,j} E(r_{ij})$$

$$C \text{ Rayon atomique}$$

$$E \text{ de liaison état fondamental}$$

$$r_{ij} \text{ Distance interatomique}$$

$$i \text{ or }$$

$$r_{ij}$$

$$f_{ij}$$

$$f_{ij}$$

$$F_{tot} = \frac{1}{2} \sum_{i,j} E(r_{ij})$$

Potentiel empirique : Lennard-Jones

Potentiel **de paire** : partie répulsive + partie attractive : $E(r_{ij}) = E_{rep}(r_{ij}) + E_{coh}(r_{ij})$

Potentiel **non directionnel**, **longue portée** $(1/r^6)$ utilisé pour la modélisation : Interactions de Van der Waals, de systèmes gazeux ou désordonnés (Argon, verre, ...)

Potentiel empirique à N corps

Potentiel à N corps dédié aux métaux

Approche par liaisons fortes au second moment (SMA) + quelques approximations...

$$E = E_{rep} + E_{coh}$$

E_{rep} : Potentiel de paire

 E_{coh} : Structure de bande approximée par la densité local des états

$$E_{coh} = 2\sum_{i} \int_{-E_{F}}^{E_{F}} (E - \epsilon_{i}) d_{i}(E) dE$$

 ϵ_i Niveau d'énergie atomique

 $d_i(E)$ densité locale des états

On utilise la méthode des moments pour approximer la densité locale des états :

$$\mu_i^{(p)} = \int_{\mathbb{R}} E^p(E) d_i(E) dE$$

Le moment d'ordre 0 correspond à une moyenne de la densité d'état :

$$\mu_i^{(0)} = \int_{\mathbb{R}} d_i(E) dE$$

Le premier moment correspond au centre de gravité de la densité d'état :

$$\mu_i^{(1)} = \int_{\mathbb{R}} (E - \epsilon_i) d_i(E) dE$$

Le second moment correspond à l'écart type de la densité d'état :

3

Métaux de transition : cohésion atomique assurée par le recouvrement des orbitales d⁵ On approxime $d_i(E)$ par une gaussienne

La bande d contient 5 paires d'e⁻ :

$$\mu_i^{(0)} = \int_{\mathbb{R}} d_i(E) dE = 5$$

Approximons $d_i(E)$ par une gaussienne centrée sur 0 :

$$\mu_i^{(1)} = \int_{\mathbb{R}} (E - \epsilon_i) d_i(E) dE = 0$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへぐ

Cette quantité peut s'écrire à l'aide d'une base d'orbitales :

$$\mu_i^{(p)} = \int_{\mathbb{R}} E^p(E) < n |\delta(E - \mathcal{H})| n > dE$$

$$\mu_i^{(p)} = E^p Tr[\delta(E - \mathcal{H})]$$

$$\mu_i^{(p)} = < n | \mathcal{H}^p | n > = \sum_{n_1, n_2, \dots, n_{p-1}} < n | \mathcal{H} | n_1 > < n_1 | \mathcal{H} | n_2 > \dots < n_{n_{p-1}} | \mathcal{H} | n >$$

Caractérisation de la densité d'états sans calculer les états et valeurs propres de l'énergie

$$\begin{array}{lll} \mu_i^{(2)} &=& \displaystyle \int_{\mathbb{R}} (E - \epsilon_i)^2 d_i(E) dE \\ &=& \displaystyle \sum_{i \neq j} < i |\mathcal{H}| j > < j |\mathcal{H}| i > = \displaystyle \sum_{i \neq j} \beta^2(r_{ij}) \end{array}$$

 β moyenne des intégrales de sauts des e⁻ des bandes d entre atomes *i* et *j*

 $\mu_i^{(2)} = 4\beta^2(r_{ij})$

L'écart type de la densité d'état est donnée par :

$$W = \sqrt{\mu_i^{(2)}} = \sqrt{Zn}\beta(r_{ij})$$

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

On considère explicitement les intégrales de sauts de Slater-Koster : Liaisons fortes

On approxime $d_i(E)$ que l'on paramétrise à l'aide des moments, **Empirique**

$$\mu^{(0)}=$$
 5 ; $\mu^{(1)}=$ 0 ; $\mu^{(2)}=\sumeta^2(r_{ij})$

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Approximation de Friedel : Bande d rectangulaire

$$E_{coh} = -\frac{\sqrt{\sum_{i\neq j}\beta^2(r_{ij})}}{20}N_d(10-N_d)$$

Potentiel empirique SMA (métal)

$$E = \frac{1}{2} \sum_{i} \left[\sum_{j \neq i} \phi(\mathbf{r}_{ij}) - D_{\sqrt{\sum_{j \neq i} \beta^2(\mathbf{r}_{ij})}} \right]$$

Terme répulsif empirique : $\phi(r_{ij}) = A \exp(-\lambda r_{ij})$ Terme attractif empirique : $\beta(r_{ij}) = C \exp(-\mu r_{ij})$

exp(...) fonction courte portée

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへぐ

$$E = \frac{1}{2} \sum_{i} \left[\underbrace{A \sum_{j \neq i} \exp(-\lambda r_{ij})}_{V_{rep}} - \underbrace{B \sqrt{\sum_{j \neq i} \exp(-2\mu r_{ij})}}_{V_{coh}} \right]$$

Potentiel empirique SMA (métal)

$$E = \frac{1}{2} \sum_{i} \left[\sum_{j \neq i} \phi(\mathbf{r}_{ij}) - D \sqrt{\sum_{j \neq i} \beta^2(\mathbf{r}_{ij})} \right]$$

Terme répulsif empirique : $\phi(r_{ij}) = A \exp(-\lambda r_{ij})$ Terme attractif empirique : $\beta(r_{ij}) = C \exp(-\mu r_{ij})$

exp(...) fonction courte portée

$$E = \frac{1}{2} \sum_{i} \left[\underbrace{A \sum_{j \neq i} \exp(-\lambda r_{ij})}_{V_{rep}} - \underbrace{B \sqrt{\sum_{j \neq i} \exp(-2\mu r_{ij})}}_{V_{coh}} \right]$$

La forme SMA, n'a pas de dépendance angulaire

Potentiel empirique Bond Order BOP (métal et carbone)

Tersoff & Brenner développent un potentiel avec une dépendance angulaire pour le carbone

$$V_{coh} = B \sum_{j \neq i} \exp(-\mu r_{ij}) \underbrace{\left[1 + \sum_{k \neq i,j} g(\theta_{ijk}) \exp(2\mu_{ik}(r_{ij} - r_{ik}))\right]^{-1/2}}_{b_{ij} \text{ Terme de Bond Order}}$$

$$g(\theta_{ijk}) = \gamma \left[1 + \left(\frac{c}{d}\right)^2 - \frac{c^2}{d^2 + (1 + \cos(\theta))^2} \right]$$

Si c=0, la forme BOP de Tersoff est équivalente à la forme EAM

▲□▶ ▲圖▶ ▲国▶ ▲国▶ - 国 - めへで

$$B\sqrt{\sum_{j\neq i}\exp(-2\mu r_{ij})} = B\sum_{j\neq i}\exp(-\mu r_{ij})\left[1+\sum_{k\neq i,j}\exp(2\mu_{ik}(r_{ij}-r_{ik}))\right]^{-1/2}$$

Paramètrisation du potentiel

\sim 10 paramètres

Données DFT (T=0 & P=0) et/ou expérimentales (T \neq 0 & P \neq 0) :

Energie, paramètre de maille, dispersion de phonons, constantes élastiques, ...

Fit des paramètres par simulation Monte Carlo dans l'espace des paramètres Méthode de minimisation

Un bon potentiel doit être transferable

イロト イポト イヨト イヨト

EAM :
$$E = \frac{1}{2} \sum_{i} [V_{rep}(r_{ij}) - V_{coh}(r_{ij})]$$

BOP:
$$E = \frac{1}{2} \sum_{i} \left[V_{rep}(r_{ij}) - \frac{b_{ij} + b_{ji}}{2} V_{coh}(r_{ij}) \right]$$

LBOP:
$$E = \frac{1}{2} \sum_{i} \left[V_{rep}(r_{ij}) - \frac{b_{ij} + b_{ji}}{2} V_{coh}(r_{ij}) + P_{ij} V_{LJ}(r_{ij}) \right]$$

 P_{ij} fonction de switch, introduit progressivement la correction longue portée Nécessaire pour simuler du graphite

Avantages :

- Dérivable analytiquement
- Temps de calcul
- Implémentation
- Paramétrisé pour de nombreux éléments

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Inconvénients :

- Paramètrisation complexe
- Validité thermodynamique

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

- Hypothèses
- Empirisme

Tight Binding Moments Method

In tight-binding model, total energy depends on band structure and a repulsive part

$$E_{tot} = \sum_{i,j=1; i \neq j}^{N} \underbrace{\int_{-\infty}^{E_F} E_{n_i}(E) dE}_{E_{pand}(\mathbf{r}_{ij})} + E_{rep}(\mathbf{r}_{ij})$$

with an orthogonal basis of orbital the LDOS $n_{i,\lambda}$ reads

$$n_{i,\lambda} = \sum_{n} c_{i,\lambda}^* c_{i,\lambda} < \phi_{i,\lambda} |\delta(E - E_n)|\phi_{i,\lambda} >$$

= $-\frac{2}{\pi} \lim_{\epsilon \to 0^+} Im \underbrace{< \phi_{i,\lambda} | (z - \mathcal{H})^{-1} | \phi_{i,\lambda} >}_{\text{resolvant : } G_{ii,\lambda\lambda}}.$

Resolvant approximated by continued fraction with the four first moments calculated exactly

$$G_{ii,\lambda\lambda} = \frac{1}{z - a_1^{i\lambda} - \frac{(b_1^{i\lambda})^2}{\vdots z - a_M^{i\lambda} - (b_M^{i\lambda})^2 \sum_M (z)}}.$$

and $\mathcal{H} = \epsilon_i + \beta(\mathbf{r}_{ij})$ with β the Slater-Koster hopping integrals. Moments are given by :

$$\mu_1^{i\lambda} = \langle i\lambda | \mathcal{H} | i\lambda \rangle = 1; \quad \mu_2^{i\lambda} = \sum_{j \neq i} \langle i\lambda | \mathcal{H} | j\mu \rangle \langle j\mu | \mathcal{H} | i\lambda \rangle = a_1; \quad \mu_3^{i\lambda} = a_1^2 + b_2^2; \quad \cdots$$

Dynamique moléculaire

Chaque atome i est considéré comme une masse ponctuelle dont le mouvement est déterminé par l'ensemble des forces des atomes j s'exercant sur i

$$\mathbf{F}_{i} = \mathbf{m}_{i}\mathbf{a}_{i} = \mathbf{m}_{i}\frac{d^{2}\mathbf{r}_{i}(t)}{dt^{2}}$$
$$= -\frac{d\mathbf{E}(r_{i},\ldots,r_{N})}{d\mathbf{r}_{i}(t)}$$

On intègre en subdivisant la trajectoire en une série d'états discrets séparés par de petits intervalles de temps $\lim\Delta t\to 0$

$$\begin{aligned} \mathbf{v}_i(t + \Delta t) &= \mathbf{v}_i(t) + \mathbf{a}_i(t) \Delta t \\ &= \mathbf{v}_i(t) - \frac{1}{\mathbf{m}_i} \frac{d\mathbf{E}(r_i, \dots, r_N)}{d\mathbf{r}_i(t)} \Delta t \end{aligned}$$

$$\mathbf{r}_i(t+\Delta t) = \mathbf{r}_i(t) + \mathbf{v}_i(t)\Delta t$$

Simulation Monte Carlo

On cherche à évaluer la moyenne d'une observable A d'un système à $N \gg 1$ particules :

$$< A(\mathbf{r}) >= \int \cdots \int A(\mathbf{r}) \underbrace{\frac{\exp(-\beta U(\mathbf{r}))}{\mathcal{Z}}}_{\rho(\mathbf{r})}$$

On discrétise l'expression

La moyenne est réalisée sur un grand nombre (η) de micro états (i) du système étudié

$$<$$
 $A(\mathbf{r}) >= rac{1}{\eta} \sum_{i=1}^{\eta} A(\mathbf{r}^N_i)
ho(\mathbf{r}^N_i)$

On échantillone l'espace des états d'un micro état $i \rightarrow j \rightarrow \ldots$ aléatoirementselon ρ

La probabilité de passage d'un microétat i o j est assurée par la matrice de transition \prod_{ii}

Simulation Monte Carlo

La matrice de transition assure l'évolution vers l'équilibre thermodynamique du système

L'équilibre atteind, \prod ne doit pas détruire l'équilibre : Respect du bilan détaillé

Concrètement :

- **(**) On déplace 1 atome avec la probabilité $\alpha_{ij} = \alpha_{ji}$
- On accepte le déplacement avec la probabilité P_{ii}

Simulation Monte Carlo

$$\prod_{ij} = \alpha_{ij} P i j$$

Le bilan détaillé se réécrit :

$$\rho_i \prod_{ij} = \rho_j \prod_{ji}$$
$$\rho_i \alpha_{ij} P_{ij} = \rho_j \alpha_{ji} P_{ji}$$

$$rac{P_{ij}}{P_{ji}} = rac{
ho_j/\mathcal{Z}}{
ho_i/\mathcal{Z}} = \exp\left(-eta(U_j - U_i)
ight)$$

Critère Metropolis :

Si le déplacement abaisse E, $\frac{P_{ij}}{P_{ji}} < 1$

Metropolis propose :
$$min[rac{P_{ij}}{P_{ji}}, 1]$$

・ロト ・日 ・ モー・ モー・ うへの

Si le déplacement augmente E, $\frac{P_{ij}}{P_{ii}} \ge 1$

Critère Metropolis

Si $U_i < U_i$ le déplacement est accepté

Si $U_j \ge U_i$ le déplacement est pondéré par $\xi \in [0; 1]$ Si $\xi < \exp(-\beta(U_j - U_i))$ le déplacement est accepté Si $\xi \ge \exp(-\beta(U_j - U_i))$ le déplacement est refusé

Algorithme

- On sélectionne aléatoirement un atome
- On déplace aléatoirement cet atome
- On applique le critère Metropolis
- On reprend cette séquence en 1

Choix du modèle numérique fonction du système

Dynamique moléculaire

- Mise à l'équilibre du système
- Intégration équations du mouvement
- Nécessite la connaissance des forces
- Accès aux temps
- Simulation de systèmes hors équilibres

Monte Carlo

- Mise à l'équilibre du système
- Echantillonage aléatoire dans l'espace des phases
- Ne nécessite pas la connaissance des forces
- Pas de notion temporelle
- Simulation de systèmes à l'équilibres
- Simulation d'évènements rares

Yann Magnin, CINaM, CNRS, Aix-Marseille Université
Choix du potentiel fonction du système

100	Ab initio Bonne description des liaisons Petits systèmes & temps courts ~100ps
1000	Tight Binding Bonne description des liaisons Structure électronique Transférable
10000	ReaxFF Transfèrable Pas de structure électronique
1000000	BOP Temps de siumlation ~ 100ns Grands systèmes Tranfèrabilité ?
Ator	nes

Interaction de nanoparticules métalliques sur un feuillet de graphène épitaxié à la surface d'un substrat métallique (111)

Y. Magnin, G.D. Förster, F. Calvo, F. Rabilloud

contact@yann-magnin.fr; http://www.yann-magnin.fr

Interaction de nanoparticules métalliques (M) sur un feuillet de graphène (Gr) épitaxié à la surface d'un substrat métallique (111)

Incommensurabilité M/Gr à l'origine d'un moiré

Super-maille $a^* \sim 25$ Å

 $HCP \rightarrow minimum \ d'énergie \ d'une \ super-maille$

Gr+M support pour la structuration d'un réseau de nanoparticules

N'Diaye et al. Phys. Rev. Lett, 97, 215501, (2006)

Application pour le stockage d'informations haute densité sur nanoparticules magnétiques

But de l'étude :

- Etudier la stabilité des nanoparticules sur le substrat
- 2 Etudier la dynamique d'organisation des nanoparticules déposées sur le substrat
- Oépasser la limitation de taille rencontrée par la DFT

Méthodes :

- Simulations atomistiques, utilisation de potentiels empiriques, Bond Order Potential (BOP)
- Evaluation et choix d'un BOP capable de reproduire l'évolution d'observables structurales du Gr à T finie

Comparaison avec l'expérience, la DFT

▲ロト ▲周ト ▲ヨト ▲ヨト ヨー のなべ

• Paramétrisation du BOP pour les interactions M/Gr

Propriétés structurales du Gr à T finie, Monte Carlo (NPT)

A $T \neq 0$ l'excitation thermique induit la corrugation du Gr

Lorsque $T \nearrow$ la surface dans le plan S \searrow : $\alpha = \frac{1}{a(T)} \frac{da(T)}{dT} < 0$

イロン イロン イヨン 一日

Potentiels Bond Order

Potentiels empiriques fonctions des angles de liaison θ_{iik}

$$E = \sum_{i} \sum_{j>i} V_R(\mathbf{r}_{ij}) - \bar{B}_{ij} V_A(\mathbf{r}_{ij}) \quad \text{avec} \quad \bar{B}_{ij} = \frac{b_{ij}^{\sigma-\pi} + b_{ji}^{\sigma-\pi}}{2} + b_{ij}^{\pi-\pi}$$

$$V_R(\mathbf{r}_{ij}) \quad \text{Potentiels de paires : attractif, répulsif}$$

 $\bar{B}_{ij}(\mathbf{r}_{ij},\mathbf{r}_{ik},\theta_{ijk})$ Bond-order : terme à N corps

а

BOP dédiés au carbone :

 $V_A(\mathbf{r}_{ij}),$

Potentiel	Année	Nature	Portée	Références
Stillinger-Weber	1985	Empirique	courte	F.H. Stillinger and T.A. Weber, Phys. Rev. B 31, 5262 (1985)
Tersoff	1989	BOP	courte	J. Tersoff, Phys. Rev. B 37, 6991 (1988)
Brenner	1990	BOP	courte	D.W. Brenner, Phys. Rev. B 42, 9458 (1990)
REBO	2002	BOP	courte	D.W. Brenner et al, J. Phys. Cond. Matt 14, 783 (2002)
Tersoff-LB	2010	BOP	courte	L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010)
REBO-LB	2010	BOP	courte	L. Lindsay, D.A. Broido, Phys. Rev. B 81, 205441 (2010)
LBOP	2002	BOP	medium	J.H. Los, A. Fasolino, Comp. Phys. Comm. 147, 178 (2002)
LCBOP	2003	BOP	medium	J.H. Los et al, Phys. Rev. B 68, 024107 (2003)
GEEBOD	1999	BOP	longue	J. Che et al, Theor. Chem. Acc. 102, 346 (1999)
AIREBO	2000	BOP	longue	S.J. Stuart et al, J. Chem. Phys. 112, 6472 (2002)

Canonique NVT

Déplacement aléatoire des atomes

Isotherme-Isobare NPT

Déplacement aléatoire des atomes

+ Mouvements de volume

Simulations Monte Carlo (NPT)

Système composé de 200 atomes de carbone

Conditions périodiques sur x & y, pas de bord sur z

Ambiguïté concernant le volume du système

Micro-états $i \rightarrow i+1$: pondération par critère Metropolis

$$\delta_{i \to i+1} = \min\left(1, \left(\frac{V_{i+1}}{V_i}\right)^N \exp\left\{-\beta [\underbrace{P(V_{i+1} - V_i)}_{0 \text{ si } P=0} + (U_{i+1} - U_i)]\right\}\right)$$
Avec $V_{i+1} = (1 \pm \epsilon)V_i$ équivalent à :
 $S_{i+1} = (1 \pm \epsilon)S_i$ si $P = 0$

A P = 0, les mouvements de volume sont équivalents aux mouvements de surface

Energie de déformation lattérale >> Energie de déformation normale

Pour un système composé d'un feuillet de graphène seul à P=0 : $E(V)_{N,P,T} \sim E(S)_{N,P,T}$

Feuillet de graphène dans un bain de particules à $P \neq 0$

Résultats Monte Carlo : Distances premiers voisins

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Résultats Monte Carlo : Potentiels courtes portées

イロト イポト イヨト イヨト

Dispersion importante entre potentiels

Désaccord qualitatif entre potentiels, $\alpha(T) > 0$, $\alpha(T) < 0$ ou changement de signe

Résultats Monte Carlo : Potentiels moyennes portées

(日) (同) (三) (三)

Peu de dispersion entre potentiels

Accord qualitatif entre potentiels, changement de signe de α

Résultats Monte Carlo : Potentiels longues portées

(日) (同) (三) (三)

Dispersion importante entre potentiels, Désaccord qualitatif entre potentiels

Interactions de VdW pénalisent la corruguation

Mesures expérimentales et simulations DFT

Paramètre de maille dans le plan **a** : **monotone**, décroissant Coefficient de dilatation thermique $\alpha < 0$

M. Pozzo et al., *Phys. Rev. Lett.* **106**, 135501 (2011)
 N. Mounet and N. Marzari, *Phys. Rev. B* **71**, 205214 (2005)
 L.F. Huang and Z. Zeng, *J. Appl. Phys.* **113**, 083524 (2013)
 J.W. Jiang et al., *Phys. Rev. B* **80**, 205429 (2009)

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

[5] W. Bao et al., Nature Nanotech 4, 562 (2009)
[6] V. Singh et al., Nanotechnol 21, 165204 (2010)
[7] D. Yoon et al., Nano. Lett. 11, 3227 (2011)

Expérience :	lpha < 0,	$T \le 350 K$
Théorie :	lpha < 0,	Approches quasiharmoniques
BOP :	lpha<> 0,	Désaccord entre potentiels

Hypothèse : Changement de signe de α induit par des modes de phonons anharmoniques

A. Fasolino, Nat. Mater. 6, 858 (2007)

Pas de consensus...

Raman Gr/SiN

S. Linas, Y. Magnin et al., Phys. Rev. B, 91, 075426 (2015)

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Spectroscopie Raman Gr sur SiN

Terme de correction Gr/substrat :

$$\Delta\omega(T)_{Gr}^{G} = \Delta\omega(T)_{Gr+SiN}^{G} - \beta \int_{T_{0}}^{T} \left[\alpha_{sub} - \alpha_{Gr}\right] dT \quad \text{avec} \quad \alpha_{Gr} = \alpha_{potentiels}$$

D. Yoon et al., Nano. Lett. 11, 3227 (2011)

Désaccord avec $\alpha_M < 0$

Bon accord avec $\alpha_{LB} > 0$

Paramétrisation d'un BOP pour les liaisons Gr-M

Tersoff est choisi pour poursuivre l'étude :

Grandeurs	Tersoff	DFT ^[2]	
Corrugation	1.63Å	1.44Å	
E _{adsGr}	-3.9eV	-3.88eV	
E _{adsRu1} position FCC	-2.6eV	-3.97eV	

[1] J. Tersoff, Phys. Rev. B 37, 6991 (1988)

[2] B. Wang et al. New J. Phys. 12, 043041 (2010)

Simplicité du potentiel Faible coût en temps de calcul Equivalent à un EAM^[1]

La rotation du Gr dans le plan du M (111) réduit la taille des super-cellules du moiré a*

Contrôle du paramètre de maille du réseau de nanoparticules avec l'angle M/Gr

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Conclusions

- Désaccord entre potentiels
- Potentiels carbone à utiliser avec prudence pour le graphène

Perspectives

• Etude de structuration d'un super-réseau de nanoparticules

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

Phase diagram of Ni-C nanoparticles from computer simulation

Y. Magnin, C. Bichara, A. Zappelli, H. Amara, F. Ducastelle

contact@yann-magnin.fr; http://www.yann-magnin.fr

Carbon nanotubes

SWNT growth on Ni nanoparticle catalysts, $\emptyset : 1 \rightarrow 3$ nm

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

3

V. Jourdain and C. Bichara, Carbon, 58, 2 (2013)

Tight binding model

Minimal basis set : C : s and p electrons Ni : d electrons $\begin{array}{l} \mbox{Hopping integrals :} \\ \mbox{C-C : } ss\sigma, \, sp\sigma, \, pp\sigma, \, ss\pi \\ \mbox{Ni-Ni : } dd\sigma, \, dd\pi, \, dd\delta \\ \mbox{Ni-C : } sd\sigma, \, pd\sigma \end{array}$

Total energy :

$$\sum_{i} \left(\int_{-\infty}^{E_F} En_i(E) dE \right)$$

Band structure, **local** density of states

Empirical repulsive part

Parameters :

energy levels, hopping integrals experimental data : Ni₃C, graphene

E =

H. Amara et al. Phys. Rev. B **73**, 113404 (2006) H. Amara et al. Phys. Rev. B **79**, 014109 (2009) J. H. Los et al. Phys. Rev. B **84**, 085455 (2011)

Validation, interactions C-C

Défaut de Stone-Wales

	ΔE (eV)
ab initio (code ABINIT)	4.99
ab initio (code SIESTA)	5.17
liaisons fortes	6.01

T. Björkman et al., Scientific Reports 3, 3482 (2013)

Validation, interactions Ni-Ni

TABLE I. Comparison of our tight-binding d model with experimental data. The experimental values for fcc Ni and hcp Co are taken from Ref. 49, those for fcc Co from Ref. 50, and the surface energies from Ref. 51.

	Structure	Lattice parameter (Å)	Cohesive energy (eV/atom)	B (GPa)	C' (GPa)	C ₄₄ (GPa)	Surface energy (mJ/m ²)
Ni	fcc	$a/\sqrt{2}=2.489$	-4.44	187.6	55.2	131.7	1840 (solid) 2385 (liquid)
Co	hcp	a=2.50 c=4.07	-4.39	193			1884 (liquid)
Co	fcc			182	32.5	92	
This work	fcc	$a/\sqrt{2}=2.489$	-4.44	182.1	68.8	96.9	1660 (100) 1560 (111)

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ の 0 0

Validation, interactions Ni-C : Phase diagram

Phase diagram built from Tight Binding Osmotic Monte Carlo simulations

Osmotique (μ PT)

Déplacements aléatoires des atomes

+ Mouvements aléatoires du volume

+ Insertions/Extractions aléatoires d'atomes

Grand Canonique (μ VT)

Déplacements aléatoires des atomes + Insertions/Extractions aléatoires d'atomes

イロト 不得下 イヨト イヨト 二日

What about nanoparticles?

Surface effect : No jump of the concentation $C(\mu_C)$

Carbon diffusion : surface \rightarrow core with $\mu_C \nearrow$, alteration of the atomic order

Continuous evolution from solid to liquid states

Steinhardt order parameter

P. Steinhardt et al., Phys. Rev. B 28, 784 (1983)

Local and directional order parameter based on spherical harmonics

$$q_{6m}(i) = \frac{1}{N(i)} \sum_{j=1}^{N(i)} Y_{6m} \left(\theta(\mathbf{r}_{ij}), \phi(\mathbf{r}_{ij}) \right)$$

6

Local order parameter for site *i*

 $\bar{S} > 0.85$ NP \sim solid

$$S_{i} = \frac{1}{N_{b}} \sum_{j=1}^{N_{b}} \frac{\sum_{m=-6}^{m} q_{6m}(i) q_{6m}^{*}(j)}{\left(\sum_{m=-6}^{6} |q_{6m}(i)|^{2}\right)^{1/2} \left(\sum_{m=-6}^{6} |q_{6m}(j)|^{2}\right)^{1/2}} \longrightarrow \bar{S} < 0.25 \text{ NP ~cliquid}$$

Average \overline{S} determines the solid-liquid fraction of a nanoparticle $\overline{S} = \mathfrak{I} \otimes \mathfrak{I}$ Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Phase diagrams from order parameter

Phase diagrams from order parameter

Phase diagrams from order parameter

Large cristalline core, Small liquid shell, Carbon dissolved

Yann Magnin, CINaM, CNRS, Aix-Marseille Université
Large cristalline core, Small liquid shell, Carbon dissolved

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Small cristalline core, Large liquid shell, Carbon dissolved

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Molten nanoparticle, Carbon dissolved

Molten nanoparticle, Carbon segregation

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Mostly solid nanoparticle, Carbon segregation

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

イロト イポト イヨト イヨト 二日

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

イロン イヨン イヨン イヨン 三日

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Shape dependence : lcosahedron (309 atoms)/Wulff (201 atoms)

1600 1400 1200 1000 800 0 10 20 30 XC (%)

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Wulff larger solid phase than icosahedron nanoparticle

Wulff (100) facets less sensitive to the carbon solubility

Icosahedron more compact than Wulff

Liquidus similar

Molten nanoparticles

Nanoparticle state during the growth : a key to chiral selectivity?

イロト 不得 トイヨト イヨト

-

LETTER

doi:10.1038/nature13434

Chirality-specific growth of single-walled carbon nanotubes on solid alloy catalysts

Feng Yang¹, Xiao Wang¹, Daqi Zhang¹, Juan Yang¹, Da Luo¹, Ziwei Xu², Jiake Wei¹, Jian-Qiang Wang⁴, Zhi Xu³, Fei Peng¹, Xuemei Li¹, Ruoming Li¹, Yihm Li¹, Meihui Li¹, Xuedong Bai¹, Feng Ding² & Yan Li¹

Nanoparticle state during the growth : a key to chiral selectivity?

Crystalline facets is unlikely under growth condition for Ni-C alloy

イロト イポト イヨト イヨト

Does a liquid phase visible experimentally?

High diffusivity should make it invisible

3

V. Jourdain and C. Bichara, Carbon, 58, 2 (2013)

Effect of C solubility on wetting macroscopic Ni drop on graphite

Pure Ni wets graphite : $\theta = 50^{\circ}$

 $x_{C} > 2.5\% : \theta = 90^{\circ}$

Same for Fe, Co

Y. V. Naidich et al., Powder Metall. Met. Ceram. 10, 45 (1971)

Effect of C solubility on wetting Ni NP drop on graphene

Effect of carbon solubility on wetting NP on SWCNT (10,7)

C concentration 0% Low μ_C

C concentration 24% High μ_C

イロト イポト イヨト イヨト

Modélisation croissance CNT

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Focus on CCVD (Catalyst Chemical Vapor Deposition)

Yoshida et al., Nanolett. 8, 2088 (2008)

Growth simulation

M. Diarra et al., Phys. Status Solidi B 249, 2629 (2012)

Wulff 807 atoms :

Yann Magnin, CINaM, CNRS, Aix-Marseille Université

Applications

Canatu http://www.canatu.com/

э

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Indium tin oxide (ITO) used in touch screen ITO became **expensive** (price x10 in 10 years) **SWCNT** is a good candidate for ITO replacement

Monte Carlo simulations

Mimic complex CVD reaction : Neglect thermochemistry \leftrightarrow Implicit carbon precurssor

BEGIN Monte Carlo loop

- particle insertions
- particle suppressions
- Canonical moves, relaxation
- END Monte Carlo loop

Standart Monte Carlo Metropolis relaxed the system