DE LA RECHERCHE À L'INDUSTRIE

EXPLORING THE ENERGY LANDSCAPE

Mihai-Cosmin Marinica

CEA, DEN, Service de Recherches de Métallurgie Physique, Saclay, France

mihai-cosmin.marinica@cea.f

The goal is to have the values for transition rates

... which can be used in any large scale is time and space simulation:

- 1. Rate theory
- 2. AKMC,
- 3. OKMC,
- 4. EKMC (JERK, FPKMC)
- 5. ...

Introduction

Introduction

$$\begin{split} H(q,p) &= \frac{1}{2} p^T M^{-1} p + V(q) \qquad M = \operatorname{Diag}(m_1, \dots, m_N) \qquad q = (q_1, \cdots, q_N) \in \mathbb{R}^{3N} \\ \langle A \rangle &= \int_{\mathcal{M}^N \times \mathbb{R}^{3N}} A(q,p) \, d\mu(q,p). \\ d\mu(q,p) &= Z^{-1} \exp(-\beta H(q,p)) \, dq \, dp, \\ Z &= \int_{T^*\mathcal{M}} \exp(-\beta H(q,p)) \, dq \, dp. \\ \begin{cases} \dot{q}_i(t) &= \frac{\partial H}{\partial p_i}(q(t), p(t)) = \frac{p_i(t)}{m_i}, \\ \dot{p}_i(t) &= -\frac{\partial H}{\partial q_i}(q(t), p(t)) = -\nabla_{q_i} V(q(t)). \end{cases} \\ \end{cases}$$

The goal is to have the values for transition rates

 $\frac{\mathbf{E}_c - \mathbf{E}_i}{k_B T}$

Dans la suite nous ne faisons pas la différence entre les points de col de 1er, 2ème ... ordre

X_I et X_F sont connues :

Application directe du principe de Hamilton: minimisation de l'action de la trajectoire qui lie les deux bassins

$$\delta S = 0$$

$$S = \int_0^t L\left(\mathbf{X}(\tau), \dot{\mathbf{X}}(\tau)\right) d\tau \approx \frac{t}{N+1} \sum_{J=0}^N L_J\left(\mathbf{X}_J, \dot{\mathbf{X}}_J\right)$$

$$\mathbf{X}(0) = \mathbf{X}_I$$

$$\mathbf{X}(t) = \mathbf{X}_F$$

- Exemples:
 - relaxation sous contraintes: Bennet, drag

$$S = \sum_{I} E(\mathbf{X}_{J}) \qquad (\mathbf{X}_{J} - \mathbf{X}_{CM}) \left(\mathbf{X}^{F} - \mathbf{X}^{I} \right) = \mathbf{0}$$

les méthodes de chaines (Ulitsky-Elber, NEB, CI-NEB etc)

les methodes de chaines (Ulitsky-Elber, NEB, CI-NEB etc)

$$S = \sum_{J} E(\mathbf{X}_{J}) + \frac{1}{2}k \sum_{J} \left(|| \mathbf{X}_{J+1} - \mathbf{X}_{J} ||^{2} - || \mathbf{X}_{J} - \mathbf{X}_{J-1} ||^{2} \right)$$

• Dynamique moléculairé par Action (ADM)

$$S = \frac{t}{N+1} \sum_{J=0}^{N} L_J \left(\mathbf{X}_J, \dot{\mathbf{X}}_J \right) \qquad L_J \left(\mathbf{X}_J, \dot{\mathbf{X}}_J \right) \approx L_J \left(\mathbf{X}_J, \mathbf{X}_{J\pm 1} \right)$$

Minima X

The Activation Relaxation Technique (ART)

A method to explore a potential energy surface: search for saddle points and local minima

A. Barkema, N. Mousseau PRL (1998); Phys. Rev. B (2000)E. Cances, F. Legoll, M.C. Marinica, F. Willaime, J. Chem. Phys (2009)M.C. Marinica, F. Willaime, N. Mousseau, Phys. Rev. B, (2011)

- X_i is known the others minima {X_i} and the saddle points {C_i} must be revealed by the method:
 - > 0 K method, local information; partial Hessian
 - Fast, adapted for defects
 - Tested for Fe, Cu, Zr, W, Si, SiC

$$\begin{split} \hline \lambda_1 \begin{bmatrix} \mathbf{T}_j \end{bmatrix} \rightarrow \lambda_1 \begin{bmatrix} \mathbf{H} \end{bmatrix} & (\mathbf{u}_0, \mathbf{u}_1, \dots, \mathbf{u}_{l-1}) \\ & \mathbf{En \ général \ j=15-40} \\ & \mathbf{T}_l = \begin{pmatrix} a_0 & b_1 & 0 & \cdots & 0 \\ b_1 & a_1 & b_2 & \cdots & 0 \\ 0 & b_2 & a_2 & \cdots & 0 \\ 0 & b_2 & a_2 & \cdots & 0 \\ 0 & b_{l-2} & a_{l-2} & b_{l-1} \\ 0 & 0 & b_{l-1} & a_{l-1} \end{pmatrix} \\ & \mathbf{H}_{la_l} = a_l \mathbf{u}_1 + b_1' \mathbf{u}_0 + b_2 \mathbf{u}_2 \\ & \mathbf{u}_1 \cdot (\mathbf{H} \mathbf{u}_0) = \mathbf{u}_0 \cdot (\mathbf{H} \mathbf{u}_1) \\ & \cdots \\ & \mathbf{H} \mathbf{u}_k = a_k \mathbf{u}_k + b_k \mathbf{u}_{k-1} + b_{k+1} \mathbf{u}_{k+1} \\ & \cdots \\ & \mathbf{H} \mathbf{u}_{l-1} = a_{l-1} \mathbf{u}_{l-1} + b_{l-1} \mathbf{u}_{l-2} \end{split} \\ & \text{we do not need entire H: only in the Krylov-Lanczos basis - dimension j diagonalisation of trigonal jXj matrix \\ & \text{diagonalisation of trigonal jXj matrix} \end{split}$$

| PAGE 10

The Activation Relaxation Technique (ART)

$$\begin{array}{c} x_{k+1} & & \\ x_{k} & & \\ & &$$

$$\Pi_{v_1(x_k)^{\perp}} = I - (v_1(x_k), \cdot)v_1(x_k)$$

$$\tilde{\lambda}_{1}(x_{k}) \text{ and } \tilde{v}_{1}(x_{k}) \text{ are approximations of } \lambda_{1}(x_{k}) \text{ and } v_{1}(x_{k})$$

 $\tilde{v}_{1}(x_{k}) = v_{1}(x_{k}) + \alpha_{k}, \quad \tilde{\lambda}_{1}(x_{k}) = \frac{\lambda_{1}(x_{k})}{1 + \beta_{k}}, \quad |\alpha_{k}| \ll 1 \text{ and } |\beta_{k}| \ll 1$

 $|x_{k+1} - x_{*}| \leq \gamma |x_{k} - x_{*}| + O(|x_{k} - x_{*}|^{2}) + O(|x_{k} - x_{*}| |\alpha_{k}|) + O(|x_{k} - x_{*}| |\beta_{k}|),$

algorithm locally converges, and the convergence speed is at least linear.

number		SIA		VAC	
of defects		$ARTn^{44}$	This work	$ARTn^{44}$	This work
1	$\langle f \rangle$	462	298	780	291
	η	4.6	4.7	1.8	7.9
2	$\langle f \rangle$	548	328	705	323
	η	4.2	4.4	2.6	7.1
3	$\langle f \rangle$	691	320	667	321
	η	2.6	4.4	2.8	7.4

Application: di-SIA iron

 \Box many non-parallel configurations between the $I_2^{<110>}$ et $I_2^{<111>}$

□ quasi-continuum of states between 0.42 eV and 0.83 eV (dissociation energy of the di-interstitiel)

□ beyond the bonding energy two separated SIA

ARTn et Metropolis

Find the absolut minimum of an energy landscape

Kinetic ART

N. Mousseau et al., Journal of Atomic, Molecular, and Optical Physics. 2012, 1–14 (2012).

- 1. ART biblio:
 - a. ART :
 - ✓ G. T. Barkema, N. Mousseau, *IPhys. Rev. Lett.* 81, 1865 (1998).

b. ART nouveau :

- ✓ N. Mousseau, G. T. Barkema, Phys. Rev. B **61**, 1898-1906 (2000).
- ✓ A. Barkema, N. Mousseau Phys. Rev. Lett. (1998)
- ✓ E. Cances, F. Legoll, M.C. Marinica, F. Willaime, J. Chem. Phys (2009)
- ✓ M.C. Marinica, F. Willaime, N. Mousseau, Phys. Rev. B, (2011)
- 2. Sources ARTn (C et F90, also interfaced with SIESTA, PWSCF)

http://www.phys.umontreal.ca/ mousseau/index.php?n=Main.Logiciels

Ou

GOOGLE: ART Mousseau

2. kART, under request

Elementary defects induced by irradiation

Materials under irradiation for the nuclear industry (e.g. high fluxes of neutrons)

pka = primary knocked atom
T = kinetic energy transferred to the
pka

Number of Frenkel pairs : $n \approx \alpha T / (2.E_d)$

interstitial
vacancy

- Isolated selfinterstitials
- Isolated vacancies.
- Interstitial clusters.
- Vacancies clusters.

+

• atomic mixing: (≈10Resplacements /displacement)

Molecular Dynamics simulations, 80 keV, 3 10⁶ atoms, 10 ps L. Van Brutzel (CEA/Saclay, France)

Elementary defects induced by irradiation

□ <u>Annihilation (recombination)</u>

system tend to recover the ground state (bulk state)

Clustering (agglomeration)

■ vacancy : $V_n + V_m \rightarrow V_{n+m}$

• interstitial : $I_n + I_m \rightarrow I_{n+m}$

1₂

Elimination on sinks

Dislocation lines (network & loops),

- Grain-boundaries
- Free surfaces, voids, bubbles.

annihilation: In the mally activated atom

jumps ; slow evolution of the point defect population

MORPHOLOGY OF DEFECT CLUSTERS IN METALS UNDER IRRADIATION

CQZ

MORPHOLOGY OF DEFECT CLUSTERS IN METALS UNDER IRRADIATION

CQZ

New type of clusters

F. Gao et all J. Nucl. Mater. 276, 213 (2000).

C. Domain, C. S. Becquart, Phys. Rev. B 65, 024103 (2001)

C.-C. Fu, F. Willaime, and P. Ordejon, Phys. Rev. Lett. 92, 175503 (2004).

M.C. Marinica et al PRB 83 (2011) 094119

Disconectivity graph: archetypal energy landscape

High downhill barriers, no well defined global minimun

Low downhill barrires and well defined global minimum

'Rough' landscape, e.g. glasses

O. M. Becker and M. Karplus, J. Chem. Phys. **106**, 1495 (1997) D. J. Wales, M. A. Miller, and T. Walsh, Nature **394**, 758 (1998) D. J. Wales, Energy Landscapes, Cambridge University Press

| PAGE 25

Non-Parallel dumbbells

SOQ 10.5

0

0

Ó.

SOD 1 0.5

D.

2

Origin of the large formation entropy

• For clarity we present a cell with only 128 atoms and

• the atoms where the localization of the mode ($\Sigma_{\alpha}|\xi_{i\alpha,p}|^2$) is higher than a critical value (0.01 A²)

6

<110>

1_{<111>} bulk Fe

∠_{NP} 3_{NP}

6

Frequency (THz)

10

(a)

(b)

10

8

12

14

8

• $\xi_{i\alpha,p}$ is the eigenvector associated to the i^{th} atom in the direction α of the p^{th} mode.

• The orange atoms are the defect atoms and gray atoms are the bulk atoms which fulfil the above localization criterion.

Building a new type of interstitial clusters

How to combine the triangle and ring defects ?

3i - 1v

6i - 3v

9i - 6v

<mark>12i</mark> - 10v

4 triangles 4 rings

Di-interstitial

Z16 Frank-Kasper polyhedra

- Low formation energy (ab initio): + 0.71 eV (compared to 110 cluster, 0.12 eV binding energy)
- 2. Very large antiferromagnetic moment: -33 μ_B compared to the bulk ! (-8 μ_B in the case of <110> dumbbell)
- 3. Small formation volume (ab initio)
- 4. Large formation entropy (some empirical potential): + 24 k_B (4 k_B in the case of 110)

Building larger clusters

Identification of the crystal structure: C15 Laves phase

Interstitial clusters in Cubic Phase of Laves C15 or MgCu2

Characteristics of C15 clusters

Stability of C15 clusters against loops

DFT calculations: PWSCF code, 250 atoms, tested against pseudopotential (USPP and PAW), semicore states, LDA/GGA, cell size

Others BCC: I4 case

- 1. Two basins: C15 and parallel dumbells ; confirms that C15 is the lowest energy structure
- 2. shows that it is immobile (confirmed by MD simulation over μ s)
- 3. Older clusters identify a particular branch of the C15 basin

Growth of C15 Clusters

- ARTn

Doesn't exceed the barrier for <110> dumbbell migration

Using a method for systematic search in the energy landscape we have predicted a 3D crystalline structure for self-interstitial clusters in bcc metals

- Very low energy structures
- Can grow by capturing <110> dumbbells
- Have large antiferromagnetic moments in Fe
- Are immobile

