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From one example …

From Y. Wang,  L. Q. Chen and  A.G. Khachaturyan, Comp Sim in Mat Science, 
Kichner et al  Ed. Nato Series 1996

Simulation of the precipitation of ’ precipitates inside Ni-based  
superalloys by phase field modeling

Simulated results



Phase field (PF) model is a powerful tool to simulate at the mesoscale 
(from nm to micron) the microstructure formation and evolution, in 
terms of :
•The size of the precipitates
•The shape of the precipitates
•The spatial distribution of the precipitates (alignment along specific 
crystallographic directions, …)

More generally, phase field model is applied to treat any 
compositional or structural inhomogeneities that arise during 
processing of materials: precipitates, dislocation loops, grain 
boundaries, cavities, bubbles, … 

Important to understand the mechanisms lying behind these 
microstructural features, since they may have a detrimental impact on 
the mechanical properties of the materials

… to general considerations



Due to its mesoscopic nature, phase field models are at:

•The mesoscopic/microscopic interface:

Phase field models require input data from atomistic simulations such
as elastic constants, interfacial free energies, diffusion coefficients, 
chemical free energies, elastic misfits…

•The mesoscopic/macroscopic interface:

Knowledge of the microstructure to calculate macroscopic quantities
(porosity, thermal conductivities, …)



Plan

Phase field formalism

•Description of the microstructure

•Thermodynamics

•Kinetics

•Advantages and limitations

Applications



Phase Field Formalism



What is it?
The ensemble of defects that are in thermodynamic equilibrium or not. Their number 
and topology evolve with time in order to reach the minimum of the thermodynamic 
potential adopted.  Both the compositional /structural domains and also interfaces has to 
be correctly described as a whole by using a set of field variables.

How can it be described ? 
There are two kinds of field variables - or order parameters -, conserved and not 
conserved.

•Conserved parameters (obeys to a conservation law, like diffusion equation):
Most of the time, composition of the different diffusing species

•Non conserved parameters:
LRO parameters which charaterize the cristallinity of the different phases

Given the values of the order parameters at each place and time, the
microstructure is totally described. 

Description of the microstructure



a) Diffuse interface (PF), b) sharp interface

The order parameters are 
continuous across the interfacial 
regions, and hence the interfaces 
are diffuse.

Description of interfaces

In conventional approaches, regions separating compositional or 
structural domains are treated as mathematically sharp interfaces. This 
involves the explicit tracking of the interface positions, which is 
impractical for complicated 3D microstructures

The tracking of the interfaces in phase field models is automatically 
incorporated in the evolution equations thanks to the diffuse nature of 
the interfaces, which allows the treatment of any microstructures



 Example 1: many-variant solid phase transformation

In the case of  hydride precipitation, three structural order parameters  
may be associated to the three equivalent orientations of the precipitates 
with respect to the matrix. Non conserved order parameters are therefore 
introduced: 1(r,t), 2(r,t), 3(r,t)
i(r,t) = 0 if there is matrix in (r,t)
i(r,t) = 1 if there is hydride variant i in (r,t)

c(r,t), the H concentration field, is a conserved order parameter (directly 
related to the H mass) that may describe non homogeneous situations.

(From Ma et 
al, JNM, 2002)



 Example 2: gas bubble kinetics 
under irradiation 

(From Millet et al, Comp. Mat. Science, 2011)

Order parameters required: local composition of vacancies cv(r,t), self-interstitials
ci(r,t), gas cg(r,t) (conserved) + (r,t) which distinguishes solid and voids (non 
conserved)

+ set of order parameters 1p to represent crystallographic grain orientations for 
polycristalline simulations 

+ …



 Shows the way
The equilibrium final state of the system corresponds to the minimum of the 
thermodynamic potential with respect to the extensive internal variables. In condensed 
matter it is usual to work at constant volume and temperature and therefore the free 
energy F is the thermodynamic potential. Taking into account the spatial range of the 
interactions (SR = Short Range, LR = Long Range), two different kinds of contributions 
can be considered

F = FSR + FLR

The importance of thermodynamics

The main differences among phase field models lie in the treatment 
of various contributions to the total free energy (elastic energy, 

electrostatic energy, magnetic energy,...)

All the different contributions must be expressed as function of the set 
of order parameters used to describe the microstructure



Short range chemical and structural contribution  FSR:

FSR =  
Vm

[fhom(c1, c2,…, cn, 1, 2,…, p) + 
i=1

n
1
1
i
2 (ci)2 + 

j=1

p
1
1
j
2 (j)2]dV 

fhom: local free-energy density
which incorporates local 

contribution from short-range 
chemical interactions

c1,…, cn: conserved order parameters
1,…, n: non conserved order parameters

Gradient energy terms which
are nonzero only at and around

interfaces, related to the 
interfacial energy

αi, j: stiffness coefficients



Local free energy density function fhom
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Example 1: double-well polynomial
Used to treat the simple mixture of two phases in equilibrium :

The two minima of the function 
are c1 and c2 and correspond to 
the equilibrium compositions  of 
the phases

A is the energy scale and can be 
calibrated on the nucleation 
driving force of the system

c = c2-c1 =(c1+c2)/2 
fhom

c1 c2
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The constants c1 , c2 and  A1-A7 are phenomenological parameters that 
can be fitted to reproduce the experimental phase diagram.

From Y. Wang, L. Q. Chen and A. G.
Khachaturyan: J . Am. Ceram. Soc. 
79, p. 987, 1996.
Schematics illustrating the variations
of f(c,i) as a function of c and i.

Example 2: Ginzburg-Landau expression
For many-solid phase transformations, the free energy volume density  
f(c,i) has to satisfy a given number of symmetry conditions. In the 
case of hydrides precipitation in a Zr matrix Ma et al. (Script. Met. 
2002) devised a Ginzburg-Landau like expression:



Example 4: direct coupling with CALPHAD approach
(Shi et al, Acta Mat 2012) 
Application to Ti-Al-V alloys
12 orientation variants
2 conserved order parameters Al and V
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Free energy (Redlich-Kister polynomials) of each phase

Interpolation  to obtain a general expression of the free enrgy

Interpolation functions



The gradient energy terms

The gradient energy terms are associated to the interfacial energy, 
defined as the excess free energy associated with the 
compositional/structural inhomogeneities occuring at interfaces.

For the double-well potential, analytical relation between the 
interfacial energy  and the stiffness parameter :

For the other potentials,  has to be evaluated numerically.

Gradient energy terms =  
Vm
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c2(A/2)0.5

3  



Particularly important since phase transformations in solids usually 
produces coherent microstructures at the early stages. The lattice 
mismatch between phases are accomodated by elastic displacements. 

The elastic interactions play a major role in predicting the shape of the 
precipitates as well as the long range precipitates arrangements at the 
mesoscale.

Required ingredient to treat the microstructure of dislocations in phase 
field models.

...

The long range energy contribution:
the importance of the elastic energy



Formation of chess-board like
structure in Co-Pt alloys (from
Le Bouar et al, acta mat, 1998)

Growth of elastically strained thin
films (PbTiO3) on a substrate (from

Li et al, App. Phys. Lett., 2001) 



Elastic parameters

Elastic constants of the matrix:

Elastic constants of the precipitate:

Voigt notation: 
(i; i)  i, (2; 3)  4, (1; 3)  5, (1; 2)  6
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Cubic systems
3 independent values:
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Hexagonal systems
5 independent values:
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 Stress-free strain (STFS) associated to the transformation:

To calculate the SFTS, it is required to choose 3 non collinear vectors
in the matrix (U1, U2, U3) and to know their images after the 
transformation (V1, V2, V3), which allows to calculate the matrix
transformation F:

V = FU ij
0 = 

FtF - I
2  

Example 1: pure dilatation

Cell of the 
matrix

Cell of the 
precipitate
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Example 2: transformation of a hcp into fct phase, case of α in zirconium alloys

Structure of -Zr

Structure of  hydride
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Each component 
depend on a, aγ, c, 
and cγ

a

c

cγ

aγ



Elastic energy:

Total strain: 

Elastic strain: 

Eelas = 
1
2

V

Cijkl(r)ij
el(r)kl

el(r)dV 

ij(r) = ̄ij + ij(r) 

ij
el(r) = ij(r) - ij

0θ(r) 

((r) = 1 inside the precipitate, 0 inside the matrix
Order parameter of the phase-field model)

Elastic constants of the domain: 

Mechanical equilibrium: 

Cijkl(r) = Cijkl
m  + Cijklθ(r), Cijkl = Cijkl

p  - Cijkl
m  

ij

rj
 = 0 ij(r) = Cijkl(r)kl

el(r) 

ij(r) = 
1
2 (ui

rj
 + 
uj

ri
) 

How to calculate the elastic energy?
(Khachaturyan, Theory of structural transformation in solids, 1983)



1/ Homogeneous case: 

Cijkl
2

rjrl
uk(r) = Cijklkl

0θ(r)
rj

 = ij
0θ(r)

rj
 

Cijkl(r) = Cijkl
m  = Cijkl

p  = Cijkl 

Equation solved in the Fourier space (spectral method):

θ(K) = 
1
V

V

θ(r)e-iKrdV 

θ(r) = 
K

1
1θ(K)eiKr 

 Mechanical equilibrium in 
terms of displacements

Discrete Fourier transform: 

Inverse Fourier transform: 

V = L1L2L3
Li = Nia0
a0: grid spacing

Periodic boundary conditions: Ki = 2
ni
Li

 , –Ni/2 < ni  Ni/2 (niZ) 



 -CijklKjKluk(K) = ij
0(iKj)θ(K) 

Linear system to inverse (K≠0):

uk(K) = -iΩkiij
0Kjθ(K) Ωik

-1= Cijklnjnl 

n = K/K

TF(
f
ri

) = ikiTF(f) 
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 = ij
0θ(r)

rj



For a fully relaxed simulation box ̄ij = wpij
0 

ij(K) 

wp : precipitate volume fraction

Eelas = V2  
K0

1
1B(n)θ(K)2 B(n) = ij

0ij
0 - niij
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0 nn 



Cijkl
m  ≠ Cijkl

p  2/ Heterogeneous case: 

[C̄ijkl
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+Cijkl


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
rl
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Perturbation term Coupling with ̄ij 

C̄ijkl = wpCijkl
p  + (1 – wp)Cijkl

m  

 Due to the perturbation term, no linear system in the Fourier space

 Iterative procedure

(Khachaturyan et al, PRB 1995;
Hu and Chen, Acta mat 2001;
Boussinot et al, Acta Mat 2010;
Thuinet et al, Acta Mat 2012)



The displacement u is first initialized to the value u0, which 
corresponds to the solution of the homogeneous system:

C̄ijkl
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rjrl
 uk

0(r) = C p
ijklkl

0(r)
rj

 

The solution is then determined iteratively using the following relation:
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
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)uk
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

Ωik
-1= C̄ijklnjnl 

In the Fourier space:

u k
n+1(K) = -iΩki[(C p

ijklkl
0  - Cijkl̄kl)Kjθ(K) + CijklTF{


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
rl

)uk
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Practically, the number of iterations depends on Cijkl



̄ij = wpij
0 + S̄ijklkl

a  

 

Case of an applied stress:

transformation applied stress

kl
a  : applied stress 

S̄ijkl : compliance tensor 



homogeneous
isotropic domain

Elastic trigonal perturbation 
inside the precipitate

Example: Study of a trigonal
perturbation C15 inside a precipitate

(From Thuinet et al, Acta Mat 2012)



θ(K)2 = 
Vp
V  

Which morphology minimizes the elastic energy?
(homogeneous elasticity) 

Eelas = V2  
K0

1
1B(n)θ(K)2

B(n) = ij
0ij

0 - niij
0jm(n)mn

0 nn 
Elastic parameters Microstructure

precipitate

matrix

Cijkl, ij
0

Eelas   V2  minnB(n)
K0

1
1θ(K)2

Eelas  Vp

2  minnB(n)

Parseval theorem




minnB(n) = B(n0) n0 is the direction which minimizes B(n)

θ(K) = 0 if K/K ≠ n0

Eelas = V2  
K0

1
1B(n)θ(K)2 = V2  B(n0)

K0

1
1 θ(K)2 = Vp

2  B(n0) 

The morphology which minimizes the elastic energy is a platelet
the normal of which is n0

n0 also called the elastically soft directions

Application to the determination of the habit plane or facetting of 
precipitates



Example 1: cubic system, isotropic SFTS tensor

2C44 + C11 - C12 > 0  n0 = <100>

2C44 + C11 - C12 < 0  n0 = <111>

(J.W. Cahn, Acta Metall., 1962)
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Example 2: hexagonal system, isotropic SFTS tensor

5 independent elastic constants C11, C33, C12, C13, C44

Isotropic in the basal plane

Classification which depends on 2 threshold values for C44:

a

c


Basal plane



 First case: [C44]th1 < [C44]th2

• C44 < [C44]th1 s = 0 h = 90°
• [C44]th1 < C44 < [C44]th2 s = 0° h = 90°
• [C44]th2 < C44 s = 0° h = 0



with I and J functions of the elastic constants:
I = - C12C13 + (C13)2 – C12C33 + C11(C13-2C44) – 2C12C44 + 2C13C44 + 2C33C44
J = 3(C13)2 – C11(C13 + 2C33 – 2C44) + 6C13C44 + 2C33C44 + C12(C13 – C33 + 2C44)

)
J
I(cos

2
1 1

0  

Second case: [C44]th2 < [C44]th1



Classification of hexagonal systems

(From Thuinet et al, APL 2012)

Family Criterion s h 

I [C44]th2 > [C44]th1 > C44 0 90° 

II [C44]th1 < C44 < [C44]th2 0 90° 

III C44 > [C44]th2 > [C44]th1 0 0 

IV [C44]th1 > [C44]th2 > C44 0 0 

V [C44]th2 < C44 < [C44]th1 90° 0 

VI C44 > [C44]th1 > [C44]th2 90° 0 

 



In fact, the notion of SFTS can be applied to a large diversity of cases

In the case of homogeneous or heterogeneous elasticity, the elastic
energy can be easily evaluated for any arbitrary microstructures in the 
Fourier space.

Example 1: homogeneous solid solution 

this formalism has been extended in the framework of the microscopic
elasticity theory of homogeneous solid solutions to take into account
long range elastic interaction between the different species diffusing
inside a solid solution.



p(r,t): shape function of
precipitate of type p

Gij(k)=(λijklkmkl)-1  Fourier transform of the Green function 

: stress free strain : linear expansion 
coefficient related to 
alloying (Vegard’s Law)

Coherent Inclusion Model Solid Solution Model (long-wave limit)
(Khachaturyan, Theory of structural transformation in solids, 1983)

cp(r,t): composition of species p
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Example 2: dislocations

According to the result of Nabarro (Theory of crystal dislocations, 1967), 
one dislocation loop is elastically equivalent to a platelet of thickness d it 
encompasses and characterized by a SFTS defined as:

(Wang et al, Acta Mater. 49, 2001
Rodney et al, Acta Mater. 51, 2003)



Example 3: crystalline plasticity

Individual treatment of each dislocation may be computationally
prohibitive at mesoscale
Use of crystalline plasticity model to calculate the plastic strain

                ij
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ijijijklelas εσVdVrεrεrεrεrεrεrλ

2
1=E 

The plastic strain can be numerically treated in the same way as any
SFTS for the calculation of the displacement field. For example, in the 
case of homogeneous elasticity:

uk(K) = -iΩkiCijklKj[kl
0θ(K) + kl

p(K)]
Phase

transformation

Plastic effect



γ̇r =ρr brvr  

ρ̇r ൌ ሺ
1
Lr െ 2ycrρr ሻ

|γ̇r |
br  

τr =Rr: σ 

Crystalline plasticity model:

 Plastic strain :

 Shear rate : dislocations velocity :

 Density dislocations evolution law :

 Plastic activation:

>

ε̇ij
p ൌ ∑Rij

r γ̇r  

τcr=τc0
r +μbrටሺ∑arhρh ሻ 

Lr =KL ටሺ∑arhρh ሻൗ  with

vr =v0rexpሺ
െμሺbrሻ3

2kbT
ሻሾ
|τr | െ τcr

τcut
r ሿn  

r : slip system

(Kundin et al, Journal of the Mechanics and Physics of Solids 59, 2011
Kundin et al, Journal of the Mechanics and Physics of Solids 76, 2015)



for the non conserved order parameters
(Allen-Cahn or Ginzburg-Landau equation)

for the conserved order parameters 
(Cahn-Hilliard equation)

The knowledge of the free energy and the kinetic coefficients provides a consistent 
set for the calculation of the microstructure time evolution.

 How to deal with kinetics? 
In the general case, little is known about the time evolution of a system being held far 
from the thermodynamic equilibrium. However, the thermodynamics of irreversible 
processes (TIP) in the linear response approximation has been proven to successfully 
describe  a great variety of situations. In this framework a distinction is made between
conserved and non conserved order parameters:

Kinetics

c(r,t)
t  = M2 F

c(r,t)

p(r,t)
t  = -Lp

F
p(r,t)



Application to irradiation:

The Cahn-Hilliard equation can incorporate supplementary terms to 
take into account generation of defects due to irradiation and 
recombination

Example: conservation equation for vacancies

 
t))(r,ct),(r,(cγt))(r,(cg

δc
δFM

t
t)(r,c

SIAvv
v

2v  




Production term Recombination term



Example: resolution of the kinetic equation with the semi-implicit
spectral method


c 

Vm

fhom(c)dV = 
fhom

c

c 

Vm


2(c)2dV = -2c 

c(r,t)
t  = M2 F

c(r,t) 
F=Fchem+Eelas 

Fchem =  
Vm

[fhom(c) + 

2(c)2]dV

Cahn-Hilliard equation

Short-range contribution

Long-range contribution
(homogeneous elasticity)

One order parameter c(r,t)

Functional derivatives:

Eelas = 
Vm

2
K

1
1B(n)c(K)c*(K)



Spectral method:
c(K)
t  = - MK2[fhom

c (K) + K2c(K) + 
Eelas

c (K)] 

Explicit temporal discretization:

c(K,t+dt) = c(K,t) - MK2dt[fhom

c (K,t) + K2c(K,t) + 
Eelas

c (K,t)] 

c(K,t+dt) = c(K,t) - MK2dt[fhom

c (K,t+dt) + K2c(K,t+dt) + 
Eelas

c (K,t+dt)] 

c(K,t+dt) = c(K,t) - MK2dt[fhom

c (K,t) + K2c(K,t+dt) + 
Eelas

c (K,t)] 

Implicit temporal discretization:

Semi-implicit temporal discretization:

 c(K,t+dt) = 
c(K,t) - MK2dt[fhom

c (K,t) + 
Eelas

c (K,t)]
1+MK4dt  



Eelas

c (K,t) = B(K)c(K) 

Advantage of the spectral method: simple form of the elastic driving
force

Advantage of the semi-implicit method: simplicity of the explicit 
scheme but use of larger numerical time steps

(Chen & Shen, J. Comput. Phys. Commun. 1998) 



Time and space scale ‘meso’ in general above those spanned by 
atomic scale modelling

Presence of space (in contrast with Rate Theory, for example)

Long-range effects naturally included

Time and space scale ‘meso’ in general too high to treat nucleation

Time and space scale ‘meso’ in general too small to treat macroscopic 
problems: a good coupling with macro models must be elaborated

Advantages

Limitations



Application 1:
Morphological bifurcation



(Thompson et al, Acta Metall
Mater 1994;42)

L = 
2C44rp

  > 5.6 

Morphology of the precipitate controlled by the competition between the interfacial
energy and the elastic energy

Morphology which minimizes the interfacial contribution (isotropic interfacial
energy): sphere

Morphology which minimizes the elastic energy: platelet

The interfacial energy is proportional to the interfacial surface

The elastic energy is proportional to the volume

Example: transition between
square and plaquette



3 orientation variants: precipitates
aligned with dense directions
< -1-1 2 0> inside the basal plane of 
the hexagonal matrix

Problem

Fig. TEM Micrograph of intragranular 
hydrides inside the basal plane of the 

hexagonal matrix

 hydride

1 μm

[0001]

Problem

Symmetry break between  matrix (hexagonal cristalline system) and 
precipitate (trigonal cristalline system)

Influence of the symmetry break on:
• The elastic properties of the system
• The resulting morphology of the coherent hydrides



TEM micrograph of  hydride 

4 Zr atoms

2 H atoms

 Cristalline system : TRIGONAL

 Bravais lattice: HEXAGONAL
aζ = aZr = 3.232 Å

cζ = 2cZr = 10.294 Å

 Space group : 3Pm1

 Stoechiometry : Zr2H 

 Metastable phase

aζ

cζ

Coherent hydride with the 
matrix
Needle-like morphology
Length: 100-500nm

New  hydride phase identification

Z. Zhao, J.‐P. Morniroli, A. Legris,  A. Ambard, Y. Khin, L. Legras & M. Blat‐Yrieix, “Identification and characterization of a 
new zirconium hydride”, Journal of Microscopy, Vol. 232, 2008, pp. 410‐421 



Stress-free strain
Stress-free strain tensor associated with → transformation must respect the 
symmetry elements of both matrix and precipitate, i.e. must be invariant by 2π/3 
rotation around c axis (//[0001]) 



])0001[],0121[],0110([
0
33

0
11

0
11

ε00
0ε0
00ε

)ζα(
















0
ijε

• Transversely isotropic tensor in the basal plane

• The same stress-free strain tensor is associated to each orientation variant



phase Matrix  Precipitate ζ 

Point group 6/mmm (hexagonal) 3m1 (trigonal) 

Voigt constants 
matrix 





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
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2
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
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
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







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
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













2
1211015000

044001515
15044000

000331313

0150131112

0150131211

cc
c

ccc
cc

ccc
cccc
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Numerical 
values (in GPa) 

c11=155; c12=67; c13=65; c33=173; 
c44=36 

(experimental values, Fast et al., 
Phys. Rev. B, 1995) 

c11=168; c12=89; c13=67; c33=195; 
c44=29; c15=-23 

(experimental values, Fast et al., Phys. 
Rev. B, 1995 + ab initio calculations) 

 

 5 independant elastic constants in the hexagonal matrix
 1 supplementary elastic constant in the trigonal precipitate (c15)

Elastic constants



Phase field simulations

500~ t 225000~ t 350000~ t 600000~ t

c15 =
24 GPa

130nm

[101̄0] 

[1̄21̄0] 

Equilibrium
morphologies

102500~ t 225000~ t 350000~ t 600000~ t

500~ t 225000~ t 350000~ t 600000~ t

c15 =
26 GPa

c15 =
28 GPa

N
o bifurcation

bifurcation

(Thuinet et al, Acta Mat 2012)



Influence of direction and magnitude of stress on the re-
orientation kinetics of hydrides in the basal plane

=5000 =50k =100k =150k

[0110]

[2110]
0MPa

=1 =10k =20k =35k

[0110]

[2110]
300MPa

=1 =10k =15k =20k

[0110]

[2110] 600MPa

[0110]

[2110]

Applied 
Stress



n

=1000 20000 =100k =200k

[0110]

[2110]

=100 5000 =10000 =25000

[0110]

[2110]

600MPa
Applied 
Stress



80MPa

=1000 =10000 =60000 =135000

n

=1000 =1000 =15000 =25000

[0110]

[2110]

n

[2110]

[0110]

Applied 
Stress



[0110]

[2110]



/3/3
[0110]

[2110]



/3/3
[0110]

[2110]



/3/3
[0110]

[2110]



/3/3

In summary:
Applied 
Stress

Applied 
Stress

Applied 
Stress

No Applied 
Stress

The level of the critical stress to apply to trigger reorientation depends
on:
•The volume fraction of precipitates
•The interfacial energy of precipitates
•The orientation of the applied load

(Thuinet et al, JNM 2013)



Application 2:
Calculation of sink strengths



<a> loops in Zr

Multi-sink interactionsFrenkel pair formation



(H. Rouchette et al Computational Materials Science 88 pp. 50-60 (2014))









(Rouchette et al, PRB 90, 014104 (2014))



(H. Rouchette et al, Nucl. Inst. and Meth. in Physics Res. Sec.B (2015))







Application 3:
Radiation Induced Segregation



Fe-9Cr  irradiated at 3 dpa, 1E-7 
dpa.s-1, 500°C

K. G. Field, Journal of Nuclear Materials 445 (2014) 143–148

Formalism



Coupling between atomic and mesoscale

Piochaud et al, MRS 2015



Validation… and beyond



Virtual numerical experiences: thermodynamics is changed but not 
kinetics

Influence of the composition at the grain boundary



What have we learnt? 
Phase-field models are built following 3 main steps:
1/ Definition of the order parameters
2/ Definition of the energy functional
3/ Definition of the kinetic equations 

Phase-field models can deal with the evolution of arbitrary 
morphologies and complex microstructures without explicitly tracking 
the positions of interfaces.

Microelasticity theory can be easily incorporated in the phase-field 
formalism. Then, long-range elastic interactions between phases, 
dislocations, diffusing species can be taken into account.

Phase-field models have been successfully applied to various materials 
processes including solidification, solid-state phase transformations, 
coarsening, and growth. Significant additional efforts are still required to 
couple these approaches with macroscopic models.


