Méthodes dynamiques (Phonons) Modes de vibration

Patrick GANSTER

Méthodes dynamiques (phonons)

Modes de vibrations d'un système

Méthodes dynamiques (phonons)?

Modes de vibrations d'un système

Méthodes dynamiques (phonons)?

Diffusion atomique

Menu

- Phonons et méthodes expérimentales de caractérisation
- Approximations et oscillateurs harmoniques

Matrice dynamique Calcul des fréquences et vecteurs propres Décomposition des spectres de vibration

Vibrations des molécules simples

Exemple : Verres d'oxydes

- Phonons et diffusion
- Ce qu'il reste à voir ...

Vibration d'un système atomique : phonons

Un **phonon** = un mode de vibration d'un système atomique = exitation vibrationnelle collective du réseau

(cristallin, amorphe, *molécule, cluster*)

= quasi-particule quantique d'énergie

$$E = \hbar \omega$$

$$\vec{p} = \hbar \vec{k}$$

Boson : statistique de Bose-Einstein

Ensemble des vibrations d'un système

- Signature d'un matériau ou d'une molécule
- Interviennent dans les phénomènes de diffusion, transferts thermiques, ..

Les phonons

Principales méthodes expérimentales de caractérisation :

Diffusion inélastique des neutrons

Spectroscopie infrarouge (absorption)

Spectrocopie Raman (Diffusion)

Diffusion inélastique des neutrons

Spectroscopie absorption infrarouge

Spectroscopie absorption infrarouge

Spectroscopie absorption infrarouge

Spectroscopie Raman

Polarisation de la matière

→ excitation, dé-excitation de modes vibrationnelles

MINES Saint-Étienne

IR vs Raman

Fig. 3. — a) Coefficient d'absorption infra-rouge (en continu) et spectre Raman réduit (en pointillé) pour Si amorphe; b) densité d'états de phonons pour Si cristallisé (en pointillé) et densité d'états élargie (en continu), d'après [9].

ML Theye Propriétés optiques et densités D'états des solides non crystallins Revue de Physique Appliquée 12, 725 (1977)

Quelques rappels..

Approximation harmonique (AH)

→ interaction entre atomes quadratique : Energie ~ X ²

Dimension 1

Approximation harmonique (AH)

→ interaction entre atomes quadratique : Energie ~ X ²

Dimension 1

Espace des positions (dimension 3N)

Oscillateur Harmonique 1D

$$u = x - x_0$$

$$u(t) = u_0 \cos(\omega t - \varphi)$$

Energie cinétique
$$T = \frac{m}{2}\dot{u}^2$$

Fonction de Lagrange L = T - V

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{u}_i} = \frac{\partial L}{\partial u_i}$$

$$\omega = \sqrt{\frac{k}{m}}$$

$$m\ddot{u} = -ku$$

 $V = \frac{k}{2}u^2$

$$\ddot{u} + \frac{k}{m}u = 0$$

$$\ddot{u} + \omega^2 u = 0$$

N atomes de masse m, en interaction (AH)

Vecteur déplacement

$$\vec{u}_{i} = \begin{vmatrix} u_{xi} \\ u_{yi} \\ u_{zi} \end{vmatrix} = \begin{vmatrix} x_{i} - x_{i}^{0} \\ y_{i} - y_{i}^{0} \\ z_{i} - z_{i}^{0} \end{vmatrix}$$
i=1 à N

$$u_i = u_{x1}, u_{y1}, u_{z1}, u_{x2}, u_{y2}, u_{z2}, \dots, u_{xN}, u_{yN}, u_{zN}$$

 $i=1 \quad 2 \quad 3 \quad 4 \quad 5 \quad 6 \quad \dots \quad 3N-2 \quad 3N-1 \quad 3N$

Energie cinétique

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i \vec{v}_i^2 = \sum_{i=1}^{3N} \frac{1}{2} m_i \dot{u}_i^2$$

Energie potentielle
$$V(\{u_i\}) = V_{eq}(\{\vec{R}_i\}) + \sum_i u_i \frac{\partial V}{\partial u_i} \Big|_{u_i=0} + \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \Big|_{u_i=0} u_j + \dots$$

N atomes de masse m_i en interaction (AH)

$$V(\lbrace u_i \rbrace) = V_{eq}(\lbrace \vec{R}_i \rbrace) + \sum_i u_i \frac{\partial V}{\partial u_i} \bigg|_{u_i = 0} + \frac{1}{2} \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \bigg|_{u_i = 0} u_j + \dots$$

Matrice « des constantes de forces »

$$\Phi_{ij} = \frac{\partial^2 V}{\partial u_i \partial u_j} \bigg|_{u_i = 0}$$

N atomes de masse m_i en interaction (AH)

$$V(\lbrace u_i \rbrace) = V_{eq}(\lbrace \vec{R}_i \rbrace) + \sum_i u_i \frac{\partial V}{\partial u_i} \bigg|_{u_i = 0} + \frac{1}{2} \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \bigg|_{u_i = 0} u_j + \dots$$

Matrice « des constantes de forces »

$$\Phi_{ij} = \frac{\partial^2 V}{\partial u_i \partial u_j} \Big|_{u_i = 0}$$

Analogie au cas 1D :
$$F = -kx = -\frac{\partial V}{\partial x} \longrightarrow \frac{\partial^2 V}{\partial x^2} = k$$

Autre écriture du DL :
$$V(\mathbf{R} + \Delta \mathbf{R}) = V(\mathbf{R}) - \mathbf{F}(\mathbf{R}) \Delta \mathbf{R} + \frac{1}{2} \Delta \mathbf{R}^T \Phi \Delta \mathbf{R}$$

N atomes de masse m, en interaction (AH)

$$V = V_{eq} + \sum_{i} u_{i} \frac{\partial V}{\partial u_{i}} \bigg|_{u_{i}=0} + \frac{1}{2} \sum_{i} \sum_{j} u_{i} \Phi_{ij} u_{j} + \dots$$

Nuls car positions d'équilibre

Formalisme de Lagrange : L = T - V $\frac{d}{dt} \frac{\partial L}{\partial \dot{u}_i} = \frac{\partial L}{\partial u_i}$

$$\frac{d}{dt} \frac{\partial L}{\partial \dot{u}_i} = \frac{\partial L}{\partial u_i}$$

$$M_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$$

N atomes de masse m, en interaction (AH)

$$m_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$$

 $m_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$ Solution « triviale » de la forme : $u_i = \frac{1}{\sqrt{m_i}} U_i e^{-i\omega t} e^{i\vec{K}.\vec{R}_i}$

Pour
$$\vec{K} = \vec{0}$$

 $\omega^2 U_i = \sum_j \frac{\Phi_{ij}}{\sqrt{m_i m_j}} U_j$

Si cristal:

→ périodicité Spaciale Théorème de Bloch

Matrice dynamique (M)

$$\omega^2 \mathbf{U} = \mathbf{M} \mathbf{U}$$
 Equation aux valeurs propres Spectre de 3N valeurs propres

Matrice dynamique

$$\omega^2 \mathbf{U} = \mathbf{M} \mathbf{U}$$

$$M_{ij} = \frac{\Phi_{ij}}{\sqrt{m_i m_j}} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V}{\partial u_i \partial u_j}$$

$$u_i = u_{x1}, u_{y1}, u_{z1}, u_{x2}, u_{y2}, u_{z2}, ..., u_{xN}, u_{yN}, u_{zN}$$

 $i=1 2 3 4 5 6 ... 3N-2 3N-1 3N$

$$M_{i\alpha j\beta} = \frac{\Phi_{i\alpha j\beta}}{\sqrt{m_i m_j}} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V}{\partial x_{i,\alpha} \partial x_{j,\beta}}$$

i et j = 1 à N atomes α et β = coordonnées d'espace x, y, z

Matrice dynamique

Dimension $3N \times 3N = (NxN) \times (3x3)$ »

$$\frac{1}{\sqrt{m_1 m_1}} \frac{\partial^2 V}{\partial x_1 \partial x_1} \qquad \frac{1}{\sqrt{m_1 m_1}} \frac{\partial^2 V}{\partial x_1 \partial y_1} \qquad \frac{1}{\sqrt{m_1 m_1}} \frac{\partial^2 V}{\partial x_1 \partial z_1} \qquad \qquad \frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial x_N} \qquad \frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial y_N} \qquad \frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial x_N}$$

$$\frac{1}{\sqrt{m_1 m_1}} \frac{\partial^2 V}{\partial y_1 \partial x_1}$$

$$\frac{1}{\sqrt{m_1 m_1}} \frac{\partial^2 V}{\partial z_1 \partial x_1}$$

$$\frac{1}{\sqrt{m_N m_1}} \frac{\partial^2 V}{\partial x_1 \partial x_1}$$

$$\frac{1}{\sqrt{m_N m_1}} \frac{\partial^2 V}{\partial y_1 \partial x_1}$$

$$\frac{1}{\sqrt{m_N m_1}} \frac{\partial^2 V}{\partial z_1 \partial x_1}$$

$$\frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial x_N} \qquad \frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial y_N} \qquad \frac{1}{\sqrt{m_1 m_N}} \frac{\partial^2 V}{\partial x_1 \partial z_N}$$

Dimension 3N x 3N

$$\Phi_{ij} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V(\mathbf{R})}{\partial x_i \partial y_j}$$

$$\Phi_{ij} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial}{\partial x_i} \left| \frac{\partial V(\mathbf{R})}{\partial y_j} \right|$$

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_i}} \frac{\partial}{\partial x_i} \left(F_j^y \right)$$

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \frac{F_j^{y}(x_i + dx) - F_j^{y}(x_i - dx)}{2 dx_i}$$

Après avoir minimisé l'énergie d'un système (?)

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \underbrace{F_j^y(x_i + dx) - F_j^y(x_i - dx)}_{2 dx_i}$$

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_i}} \frac{F_j^y(x_i + dx) - F_j^y(x_i - dx)}{2 dx_i}$$
Do j=1, Ntot

Call force_plus_dx_i
Call force_moins_dx_i

Do j=1,N dF_jx_dx, dF_jy_dx, dF_jz_dx

Call force_plus_dy_i
Call force_moins_dy_i

Do j=1,N dF_jx_dy, dF_j_dy, dF_jz_dy

Call force_plus_dz_i
Call force_moins_dz_

Do j=1,N dF_jx_dz, dF_j_dz, dF_jz_dz

Enddo

6 x N appels de force

→ Peut être gourmand en temps de calculs

Matrice dynamique

Dimension $3N \times 3N = (NxN) \times (3x3)$

Obtention des valeurs et vecteurs propres

$$\omega^2 U = M U$$

LAPACK

call **DSYEV**(jobz,uplo,3*Ntot,**matrix**,3*Ntot,**W**,WORK,3*Ntot*3-1,info)

Diagonalisation de matrices de grandes dimensions coûteux en temps de calcul

Plus gros systèmes : JADAMILU → méthode itérative (JAcobi-DAvidson method with Multilevel ILU preconditioning)

→ http://homepages.ulb.ac.be/~jadamilu/

Diagonalisation de la matrice dynamique

Exemples de temps de calculs :

Potentiel empirique : Stillinger-Weber (Si) – code maison –

Structure diamant avec CLP - (code maison / lapack)

216 atomes Remplissage : 14.secondes Diagonalisation : 0.833 s

512 atomes Remplissage : 93 secondes Diagonalisation : 28 s

1000 atomes Remplissage : **470 s** Diagonalisation : 107 s

ab initio ... ? Evaluer le temps de remplissage sachant qu'il faut 6 x N calculs de structure électronique (Wavefunction optimization)

33

Densité d'état de vibration (spectre de vibration)

3N valeurs propres

$$\omega_1$$
 ω_2 ω_{3N}

$$g(\omega) = \frac{1}{3N} \sum_{i=1}^{3N} \delta(\omega - \omega_i)$$
3N-3 ou 3N-6 en fait (mode de translation, cf. slides suivants)

$$\int_{0}^{+\infty} g(\omega)d\omega = 1$$

$$\omega^2 U = M U$$

3N valeurs propres

 ω_1

 ω_2

 ω_{3N}

34

3N vecteurs propres

x, 1

y,1 U^{3N}

 $U^{
m 3N}$

 U^{3N}

x,1

z,1 U^{3N}

x,2

 U^{3N} *y*,2

 U^{3N} z,2

 I^{3N} x, N U^{3N}

y,N U^{3N}

z, N

Directions de vibration de l'atome 1 associées au mode de vibration ω_1

z,2

x, N

y,1z,1

z,2

x, N

$$\omega^2 U = M U$$

3N valeurs propres

 ω_1

 ω_2

 ω_{3N}

 U^{3N}

35

3N vecteurs propres

x, 1

x, 1

x,1 U^{3N} y,1 U^{3N}

Directions de vibration de l'atome 2 associées

au mode de

vibration

 ω_1

y,1z,1

z, 1 U^{3N} x,2

x, N

 $U_{z,2}^{2}$

x, N

 U^{3N} *y*,2 U^{3N} z, 2

[13N X, N

 U^{3N} y,N

 U^{3N} z, N

MINES Saint-Étienne

Institut Mines-Télécom

Exemple: 3 atomes de Si

Optimisation de la géométrie

Symétrie $C_3 \rightarrow 3$ valeurs propres dont 2 dégénérées

Matrice dynamique: 9x9 elements

Diagonalisation: 9 valeurs propres, W₁, W₂, ... W_q

3 degrés de liberté = translation

3 degrés de liberté = rotation → reste 3 modes de vibration

 W_8, V_8

Représenter les modes de vibration

Par exemple, avec xmakemol

3

Si	-0.1258	-0.1623	0.0376 atom_vector	0.1319	0.5546	0.0912
Si	2.2772	0.6374	0.4297 atom_vector	0.4173	-0.3989	-0.0052
Si	0.3486	2.3250	0.4327 atom vector	-0.5493	-0.1557	-0.0859

Cf Démo

Autres logiciels:

Jmol

v_sim: http://inac.cea.fr/L_Sim/V_Sim/user_guide.html#phonons ... to update ..

Exercice

Molécule Si₅

Nombre de modes de vibration ?

Molécule Si₅

Nombre de modes de vibration ? $3 \times 5 - 6 = 9$

La diagonalisation donne 15 valeurs propres mais 6 valeurs (petites fréquences) peuvent être négatives → degrés de liberté rotation / translation

Exercice

Après Diagonalisation de la MD

Molécule Si₅

Convolution par une Gaussienne de largeur 0.2 THz

$$20 \quad n_{conv}(\mathbf{v}) = \frac{1}{\Delta \sqrt{2 \pi}} \int n(\mathbf{v}') \exp\left(-\frac{(\mathbf{v} - \mathbf{v}')^2}{2 \Delta^2}\right)$$

Modes de Vibration

Symétrie T_d

Thèse B. Mantisi 2012

Systèmes avec CLP

$$\omega^2 U = M U$$

Conditions aux Limites Périodiques (cristaux, amorphes)

→ pas de degrés de libertés de rotations

3N-3 valeurs propres (-3?)

La diagonalisation de la matrice Dynamique donne 3N Valeurs propres !! 3 vp correspondent aux dégrés de liberté de translation (peuvent être négatives)

Analyse des modes : Densités d'état partielles

Densité d'états de vibration totale

$$g(\omega) = \frac{1}{3N} \sum_{i=1}^{3N} \delta(\omega - \omega_i)$$
$$= \sum_{i=1}^{3N} g_{\alpha}(\omega)$$

Densité d'états de vibration Partielle

$$g_{\alpha}(\omega_p) = g(\omega_p) \sum_{i \in \alpha} |V_i(\omega_p)|^2$$

$$\sum_{i \in \alpha} |V_I(\omega_p)|^2 = 1$$

 ω_1

Exemple:

$$\begin{cases} 1 \\ x,1 \\ 1 \\ y,1 \\ 1 \\ z,1 \\ 1 \\ x,2 \\ 1 \\ x,2 \\ 1 \\ x,2 \end{cases}$$
 Cor

$$\begin{aligned} \left| V_{1x}(\omega_i) \right|^2 + \left| V_{1y}(\omega_i) \right|^2 + \left| V_{1z}(\omega_i) \right|^2 \\ = P_1(\omega_i) \end{aligned}$$

Contribution de l'atome 1 à $g(\omega)$

est

$$g_1(\omega_i) = g(\omega_i) P(\omega_i)$$

Exemple: verre CAS

Exemple: verre CAS

46

Génération de la structure amorphe

DM Classique

- Modèle en DM classique
- Modèle en DM ab initio
- Validation du modèle de DM classique

Poursuite de la dynamique avec CPMD

DM ab initio

Systèmes de 100 –200 atomes

Structure du verre d'oxyde

67 % SiO₂ 12 % Al₂O₃ 21 % CaO

Si et Al: formateurs d'un réseau de tétraèdres SiO₄ et AlO₄ connectés entre eux par des atomes d'oxygène dits pontants (OP)

Ca: modificateur de réseau

- ⇒ brise la connection entre tétraèdres,
- ⇒ atomes d'oxygène non pontants (ONP)

compensateur de charge AlO₄-

Exemple: verre CAS

Propriétés vibrationnelles (neutron)

Après optimisation des géométries (0K)

Modèles empiriques : bonnes propriétés structurales Moins bonnes propriétés vibrationnelles

Comparaison diffusion inélastique des neutrons (ILL)

$$G(\omega) = \frac{1}{3} \sum_{\alpha} \frac{\overline{b}_{\alpha}^{2}}{m_{\alpha}} g_{\alpha}(\omega)$$

$$\alpha = Si, O, Al, Ca$$

Exemple: verre CAS

Densités d'états de vibration partielles

Analyse des états de vibration

FIG. 15. The partial VDOS for the projections onto the vibrations of SiO_4 structural units: A_1 stretching (the solid gray line), F_2 stretching (the dashed line), F_2 bending (the dotted line), E bending (the dot-dashed line), solid-unit rotations (the triple dot-dashed line), and their sum (the black solid line) coinciding with the total VDOS. The atomic displacements in SiO_4 units for symmetric (A_1) and asymmetric (F_{2s}) stretching and also F_2 and E bending are shown schematically in the inset.

Mode de vibration de SiO₂ (tétraèdres SiO₄)

S.N. Taraskin and S.R. Elliott PRB 56, 8605 (1997)

Figure 1.2: The breathing mode of oxygen atoms in three-fold rings is responsible for the D_2 line in the Raman spectrum of v-SiO₂ [6].

Interaction avec H₂O

- Position initiale
- Position finale
- Cas où il y a dissociation

Interaction avec H₂O: reaction chimique

Fig. 2. Density of vibrational modes (density of states) for both configurations (a) and (b) (see Fig. 1).

F. Bouyer et al., J. Solid Stat. Chem. 183, 2786 (2010)

Phonons et ... Diffusion

1^{ière} loi de Fick

$$J = -\mathbf{D} \nabla c$$
Autodiffusion
$$\sim \sum_{\mathrm{def}} \mathbf{C}_{\mathrm{def}}(\mathbf{T}) . \mathbf{D}_{\mathrm{def}}(T)$$

$$C_{\text{def}} = \exp\left[\frac{\Delta S_f^{i}}{k_B}\right] \exp\left[\frac{\Delta E_f^{i}}{k_B T}\right]$$

56

Concentration de défauts (mécanismes lacunaires)

- N_{tot} sites = N + n
- N atoms
- n vacancies

Entropie de configuration = Nombre d'Arrangement de n lacunes sur N_{tot} sites

$$C_{N_{tot}}^{n} = \frac{N_{tot}!}{n!(N_{tot}-n)!} = \frac{(N+n)!}{n!N!}$$

$$S_C = k_B \ln \frac{(N+n)!}{n! N!}$$

$$S_C = k_B N \ln\left[\frac{(N+n)}{N}\right] + k_B n \ln\left[\frac{N+n}{n}\right]$$

$$\ln(n!) \approx n \ln(n) - n$$

$$\frac{\partial (\Delta G)}{\partial n} = 0$$

$$\Delta G = n.H_f - TS_c - nTS_f$$

$$\Delta G = n.H_f - TS_c - nTS_f$$

$$H_f + k_B T \ln(c_v) - TS_f = 0$$

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

57

Concentration de défauts (énergie de formation)

$$c_{v} = \exp\left(\frac{-(H_{f}) - TS_{f}}{k_{B}T}\right)$$

OK? cf. cours de Maylise

58

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Nombre de façons de placer le défaut dans la maille élémentaire

Ex. : lacune dans Si : $S_{f,conf} = k_B \ln(3)$

59

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Désordre vibrationnelle du à l'introduction du défaut

60

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Désordre vibrationnelle du à l'introduction du défaut

Entropie vibrationnelle?

Concentration de défauts (entropie de formation)

$$c_v = \exp(\frac{-H_f - TS_f}{T})$$

$$Z = \sum_{n=0}^{+\infty} e^{-\beta(\frac{1}{2} + n)\hbar \omega}$$

 $Z = \sum_{n=0}^{+\infty} e^{-\beta(\frac{1}{2} + n)\hbar \omega}$ Fonction de partition de n oscillateurs harmoniques quantiques

$$S = \frac{\partial}{\partial T} \left(\frac{1}{\beta} \ln Z \right)$$

$$S = k_B \int [(n+1)\ln(n+1) - n\ln(n)] \boldsymbol{g(\omega)} d\omega$$

où
$$n = (e^{\hbar \omega / k_{BT}} - 1)^{-1}$$

62

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$
 Structure sans défaut défaut
$$g^0(\omega)$$
 Structure avec
$$g^{\text{def}}(\omega)$$

$$\Delta S_{f,vib}^{\text{def}} = \int_{0}^{\infty} \left[g^{\text{def}}(\omega) - g^{0}(\omega) \right] \varphi(v) dv$$

$$\varphi(v) = \frac{hv}{2k_{B}T} \coth(\frac{hv}{2k_{B}T}) - k_{B} \ln\left[2 \sinh\left(\frac{hv}{2k_{B}T}\right) \right]$$

Entropie vibrationnelle

Toutes températures :

$$\Delta S_{f,vib}^{\text{def}} = \int_{0}^{\infty} [g^{\text{def}}(\omega) - g^{0}(\omega)] \varphi(v) dv$$

Limite haute température :

$$\Delta S_{f,vib}^{\text{def}} \approx 3 Z^{\text{def}} k_B \frac{\overline{v}^0 - \overline{v}^{\text{def}}}{\overline{v}^0}$$

Diffusivité et pré-facteur

1^{ière} loi de Fick

$$J = -\mathbf{D} \nabla c$$
Autodiffusion
$$\sim \sum_{\text{def}} C_{\text{def}}(T) D_{\text{def}}(T)$$

Diffusivité du défaut

$$D_{\text{def}}(T) = D_m^{\text{def}} \exp \left[\frac{\Delta E_m^{\text{def}}}{k_B T} \right]$$

Pré-facteur de diffusion

$$D_{m}^{\text{def}} = g^{\text{def}} f^{\text{def}} a^{2} v_{0}^{\text{def}} \exp \frac{\Delta S_{m,vib}^{\text{def}}}{k_{B}}$$

Diffusivité et pré-facteur

1^{ière} loi de Fick

Diffusivité du défaut

$$D_{\text{def}}(T) = D_m^{\text{def}} \exp \left[\frac{\Delta E_m^{\text{def}}}{k_B T} \right]$$

Pré-facteur de diffusion

$$D_{m}^{\text{def}} = g^{\text{def}} f^{\text{def}} a^{2} v_{0}^{\text{def}} \exp \left[\frac{\Delta S_{m,vib}^{\text{def}}}{k_{B}} \right]$$

Fréquence de saut

moyenne du spectre partiel des atomes premiers voisins

G.H. Vineyard, J. Phys. Chem. Solids 3, 121 (1957) Théorie de.l' etat de transition

Diffusivité et pré-facteur

1^{ière} loi de Fick

Diffusivité du défaut

$$D_{\text{def}}(T) = D_m^{\text{def}} \exp \left[\frac{\Delta E_m^{\text{def}}}{k_B T} \right]$$

Pré-facteur de diffusion

$$D_{m}^{\text{def}} = g^{\text{def}} f^{\text{def}} a^{2} v_{0}^{\text{def}} \exp \left[\frac{\Delta S_{m,vib}^{\text{def}}}{k_{B}} \right]$$

Besoin de connaître L'état de transition

$$\Delta S_{m,vib}^{\text{def}} = (3Z^{\text{def}} - 1) \ln \left| \frac{\overline{\mathbf{v}}^{\text{def}}}{\overline{\mathbf{v}}^{\text{def}*}} \right|$$

Nombre d'atomes investis dans la migration Du défaut

Diffusivité et pré-facteur

$$\Delta S_{m,vib}^{\text{def}} = (3Z^{\text{def}} - 1) \ln \left| \frac{\overline{\mathbf{v}}^{\text{def}}}{\overline{\mathbf{v}}^{\text{def}*}} \right|$$

Spectre de phonon

Presente

Une valeur

Propre

Negative

(point celle = position instable)

→ cf. methode ART

Coefficient de diffusion : phonons

$$J = -\mathbf{D} \nabla c$$

$$\sim \sum_{\text{def}} C_{\text{def}}(T) \cdot D_{\text{def}}(T)$$

$$C_{\text{def}} = \exp \left[\frac{\Delta S_f^i}{k_B} \exp \left[\frac{\Delta E_f^i}{k_B T} \right] \right]$$

$$D_{\text{def}}(T) = g^{\text{def}} f^{\text{def}} a^{2} v_{0}^{\text{def}} \exp \left[\frac{\Delta S_{m,vib}^{\text{def}}}{k_{B}} \right] \exp \left[\frac{\Delta E_{m}^{\text{def}}}{k_{B}T} \right]$$

$$D(T,\epsilon) = f_v C_v (T,\epsilon) d_v (T,\epsilon) + f_i C_i (T,\epsilon) d_i (T,\epsilon)$$

Coefficient d'auto-diffusion total vs (T, ϵ)

Diagramme de prédominance des mécanismes

Mécanismes de diffusion modifiés par la contrainte

P. Ganster, G. Tréglia, A. Saúl, Phys. Rev. B 79, 115205 (2009)

69

Conclusions

70

Ce qu'il reste à voir ...

Relations de dispersion (cristaux)

$$m_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$$

$$\vec{K} \in \text{R.R.}$$
 $u_i = \frac{1}{\sqrt{m_i}} U_i e^{-i\omega t} e^{i\vec{K} \cdot \vec{R}_i}$

$$\omega^{2}(\vec{K})U_{i} = \sum_{j} \frac{\Phi_{ij}e^{i\vec{K}.\vec{R}_{i}}}{\sqrt{m_{i}m_{j}}}U_{j}$$

Ce qu'il reste à voir ...

Autre possibilité d'avoir accès aux phonons :

$$g(\omega) = \frac{1}{k_B T} \int_{0}^{\infty} \sum_{\alpha} m_{\alpha} \langle \vec{v}_{\alpha}(t). \vec{v}_{\alpha}(0) \rangle_{\alpha} e^{-i\omega t} dt$$

- → dynamique moléculaire de systèmes équilibrés à une température T
- → effets anharmoniques → systèmes hors équilibres

Intensité IR et Raman → constantes diélectriques et moments dipolaire → ab initio

Diffusion thermique

Conclusions

72

Ce qu'il reste à voir ...

Méthodes d'exploration des Surfaces d'énergie potentielles (ex. : ART)

→ chercher à sortir du bassin harmonique

$$\left. \frac{\partial^2 \Phi(\mathbf{x})}{\partial \mathbf{x}^2} \right|_{x_0} = H(\mathbf{x_0})$$

H is a matrix called "Hessian" .. diagonalization of H gives the spectrum of $H(\mathbf{x}_0)$ (spectrum is all eigenvalues obtained after diagonalization $\Sigma(H)$)

$$\begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix}, \quad \longrightarrow \quad \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix}$$

If all $\Sigma(H) < 0$ Maximum

If all $\Sigma(H) >< 0$ Saddle point (All + except one or All – exect one)

If all $\Sigma(H) > 0$ **Minimum** (harmonic approximation)

Merci pour votre attention

Merci pour votre attention

Autres grandeurs thermo à partir des phonons

$$Z = \sum_{n=0}^{+\infty} e^{-\beta(\frac{1}{2} + n)\hbar \omega} \quad \text{Where} \quad \beta = \frac{1}{k_B T}$$

$$S = \frac{\partial}{\partial T} \left(\frac{1}{\beta} \ln Z \right) \longrightarrow S = k_B \int \left[(n+1) \ln(n+1) - n \ln(n) \right] g(\omega) d\omega$$

where
$$n = \left(e^{\hbar \omega/k_{BT}} - 1\right)^{-1}$$

$$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta}$$

$$C_{v} = \frac{\partial \langle E \rangle}{\partial T} \qquad C_{v}(T) = R \int \frac{\left(\frac{\hbar \omega}{k_{B}T}\right)^{2} \exp\left(-\frac{\hbar \omega}{k_{B}T}\right)}{\left(1 - \exp\left(-\frac{\hbar \omega}{k_{B}T}\right)\right)^{2}} G(\omega) d\omega$$

Autres grandeurs qui peuvent être calculées à partir de g(w)

