Méthodes dynamiques (Phonons) Modes de vibration

Patrick GANSTER

23/07/2015

² Méthodes dynamiques (phonons)

Modes de vibrations d'un système

23/07/2015

Institut Mines-Télécom

³ Méthodes dynamiques (phonons) ?

Modes de vibrations d'un système

23/07/2015

⁴ Méthodes dynamiques (phonons) ?

Diffusion atomique

23/07/2015

⁵ Menu

- Phonons et méthodes expérimentales de caractérisation
- Approximations et oscillateurs harmoniques

Matrice dynamique Calcul des fréquences et vecteurs propres Décomposition des spectres de vibration

• Vibrations des molécules simples

Exemple : Verres d'oxydes

- Phonons et diffusion
- Ce qu'il reste à voir ...

⁶ Vibration d'un système atomique : phonons

Un **phonon** = un mode de vibration d'un système atomique = exitation vibrationnelle collective du réseau (**cristallin, amorphe**, *molécule, cluster*)

= quasi-particule quantique d'énergie

 $E = \hbar \omega$

$$\vec{p} = \hbar \vec{k}$$

Boson : statistique de Bose-Einstein

Ensemble des vibrations d'un système

- Signature d'un matériau ou d'une molécule
- Interviennent dans les phénomènes de diffusion, transferts thermiques, ...

Principales méthodes expérimentales de caractérisation :

Diffusion inélastique des neutrons

Spectroscopie infrarouge (absorption) Spectrocopie Raman (Diffusion)

23/07/2015

8 Diffusion inélastique des neutrons **Neutrons Neutrons** incidents diffusés $\begin{array}{ccc} \left(E_{2},\vec{k}_{2}\right) & E_{2} = E_{1} \pm \hbar \, \omega \\ & \vec{k}_{2} + \vec{k} = \vec{k}_{1} + \vec{G} \end{array}$ $(E_{1}, \vec{k_1})$ $|\vec{k}_{1}| \neq |\vec{k}_{1}|$ $k_2 + k = k_1 + G$ $k_2 = k_1 + G + k$ 20 $E [0 \rightarrow 0,025 \text{ eV}]$ 15 requency (THz) $\omega(\vec{k})$ Relation de dispersion Densité d'états de vibration X W Phonon DOS г Institut Mines-Télécom 23/07/2015 MINES Saint-Étienne ECOLE MODMAT – ISTRES 2015

ThO₂

¹⁰ Spectroscopie absorption infrarouge

¹¹ Spectroscopie absorption infrarouge

Institut Mines-Télécom

23/07/2015

ECOLE MODMAT – ISTRES 2015

Saint-Étienne

IR vs Raman

FIG. 3. — a) Coefficient d'absorption infra-rouge (en continu) et spectre Raman réduit (en pointillé) pour Si amorphe ; b) densité d'états de phonons pour Si cristallisé (en pointillé) et densité d'états élargie (en continu), d'après [9].

ML Theye Propriétés optiques et densités D'états des solides non crystallins Revue de Physique Appliquée 12, 725 (1977)

23/07/2015

14

¹⁵ Quelques rappels..

23/07/2015

¹⁶ Approximation harmonique (AH)

 \rightarrow interaction entre atomes quadratique : Energie ~ X ²

ECOLE MODMAT – ISTRES 2015

23/07/2015

¹⁷ Approximation harmonique (AH)

 \rightarrow interaction entre atomes quadratique : Energie ~ X ²

¹⁹ **N** atomes de masse m_i en interaction (AH)

Vecteur déplacement

$$\vec{u}_{i} = \begin{vmatrix} u_{xi} \\ u_{yi} \\ u_{yi} \\ u_{zi} \end{vmatrix} \begin{vmatrix} x_{i} - x_{i}^{0} \\ y_{i} - y_{i}^{0} \\ z_{i} - z_{i}^{0} \end{vmatrix}$$

$$u_i = u_{x1}, u_{y1}, u_{z1}, u_{x2}, u_{y2}, u_{z2}, \dots, u_{xN}, u_{yN}, u_{zN}$$

i=1 2 3 4 5 6 ... 3N-2 3N-1 3N

Energie cinétique

$$T = \sum_{i=1}^{N} \frac{1}{2} m_i \vec{v}_i^2 = \sum_{i=1}^{3N} \frac{1}{2} m_i \dot{u}_i^2$$

Energie potentielle $V(\cdot)$

$$\{u_i\} = V_{eq}(\{\vec{R}_i\}) + \sum_i u_i \frac{\partial V}{\partial u_i} \Big|_{u_i=0} + \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \Big|_{u_i=0} u_j + \dots$$

²⁰ **N** atomes de masse m_i en interaction (AH)

$$V(\lbrace u_i \rbrace) = V_{eq}(\lbrace \vec{R}_i \rbrace) + \sum_i u_i \frac{\partial V}{\partial u_i} \bigg|_{u_i=0} + \frac{1}{2} \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \bigg|_{u_i=0} u_j + \dots$$

Matrice « des constantes de forces »

$$\Phi_{ij} = \frac{\partial^2 V}{\partial u_i \partial u_j}\Big|_{u_i=0}$$

.

23/07/2015

N atomes de masse m_i en interaction (AH)

$$V(\lbrace u_i \rbrace) = V_{eq}(\lbrace \vec{R}_i \rbrace) + \sum_i u_i \frac{\partial V}{\partial u_i} \bigg|_{u_i=0} + \frac{1}{2} \sum_i \sum_j u_i \frac{\partial^2 V}{\partial u_i \partial u_j} \bigg|_{u_i=0} u_j + \dots$$

Matrice « des constantes de forces »

$$\Phi_{ij} = \frac{\partial^2 V}{\partial u_i \partial u_j} \Big|_{u_i=0}$$

Analogie au cas 1D:
$$F = -kx = -\frac{\partial V}{\partial x} \longrightarrow \frac{\partial^2 V}{\partial x^2} = k$$

Autre écriture du DL:
$$V(\mathbf{R} + \Delta \mathbf{R}) = V(\mathbf{R}) - \mathbf{F}(\mathbf{R}) \Delta \mathbf{R} + \frac{1}{2} \Delta \mathbf{R}^T \Phi \Delta \mathbf{R}$$

23/07/2015

N atomes de masse m_i en interaction (AH)

$$V = V_{eq} + \sum_{i} u_{i} \frac{\partial V}{\partial u_{i}} \bigg|_{u_{i}=0} + \frac{1}{2} \sum_{i} \sum_{j} u_{i} \Phi_{ij} u_{j} + \dots$$

Nuls car positions d'équilibre

Formalisme de Lagrange : L = T - V

$$\frac{d}{dt}\frac{\partial L}{\partial \dot{u}_i} = \frac{\partial L}{\partial u_i}$$

$$M_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$$

²³ **N** atomes de masse m_i en interaction (AH)

²⁴ Matrice dynamique

 $\omega^2 \mathbf{U} = \mathbf{M} \mathbf{U}$

23/07/2015

$$M_{ij} = \frac{\Phi_{ij}}{\sqrt{m_i m_j}} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V}{\partial u_i \partial u_j}$$

$$u_i = u_{x1}, u_{y1}, u_{z1}, u_{x2}, u_{y2}, u_{z2}, \dots, u_{xN}, u_{yN}, u_{zN}$$

$$i=1 \ 2 \ 3 \ 4 \ 5 \ 6 \ \dots \ 3N-2 \ 3N-1 \ 3N$$

$$M_{i\alpha j\beta} = \frac{\Phi_{i\alpha j\beta}}{\sqrt{m_i m_j}} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V}{\partial x_{i,\alpha} \partial x_{j,\beta}}$$

i et j = 1 à N atomes α et β = coordonnées d'espace x, y, z

²⁵ Matrice dynamique

Dimension 3N x 3N = « (NxN) x (3x3) »

Matrice dynamique : calcul des éléments

Dimension 3N x 3N

$$\Phi_{ij} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial^2 V(\boldsymbol{R})}{\partial x_i \partial y_j}$$
$$\Phi_{ij} = \frac{1}{\sqrt{m_i m_j}} \frac{\partial}{\partial x_i} \left| \frac{\partial V(\boldsymbol{R})}{\partial y_j} \right|$$

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \frac{\partial}{\partial x_i} \left(F_j^{y} \right)$$

đ

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \frac{F_j^{y}(x_i + dx) - F_j^{y}(x_i - dx)}{2 dx_i}$$

23/07/2015

26

²⁷ Matrice dynamique : calcul des éléments

Après avoir minimisé l'énergie d'un système (?)

²⁸ Matrice dynamique : calcul des éléments

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \frac{F_j^{y}(x_i + dx) - F_j^{y}(x_i - dx)}{2 dx_i}$$

²⁹ Matrice dynamique : calcul des éléments

$$\Phi_{ij} = -\frac{1}{\sqrt{m_i m_j}} \frac{F_j^y(x_i + dx) - F_j^y(x_i - dx)}{2 dx_i}$$

$$Do j=1, Niot$$
Call force_plus_dx_i
Call force_plus_dy_i
Call force_plus_dy_i
Call force_plus_dy_i
Call force_moins_dy_i
Do j=1, N dF_jx_dy, dF_jz_dy, dF_jz_dy
Call force_plus_dz_i
Call force_plus_i
Call

³⁰ Matrice dynamique

Dimension $3N \times 3N = (N \times N) \times (3 \times 3)$

Diagonalisation

31 Obtention des valeurs et vecteurs propres

$$\omega^2 \boldsymbol{U} = \boldsymbol{M} \boldsymbol{U}$$

LAPACK

call **DSYEV**(jobz,uplo,3*Ntot,**matrix**,3*Ntot,**W**,WORK,3*Ntot*3-1,info)

Diagonalisation de matrices de grandes dimensions coûteux en temps de calcul

Plus gros systèmes : JADAMILU \rightarrow méthode itérative (JAcobi-DAvidson method with Multilevel ILU preconditioning)

→ http://homepages.ulb.ac.be/~jadamilu/

³² Diagonalisation de la matrice dynamique

Exemples de temps de calculs :

Potentiel empirique : Stillinger-Weber (Si) – code maison – Structure diamant avec CLP - (code maison / lapack)

216 atomes	Remplissage : 14.secondes	Diagonalisation : 0.833 s
512 atomes	Remplissage : 93 secondes	Diagonalisation : 28 s
1000 atomes	Remplissage : 470 s	Diagonalisation : 107 s

ab initio … ? Evaluer le temps de remplissage sachant qu'il faut 6 x N calculs de structure électronique (Wavefunction optimization)

 $\omega^2 U = M U$

33 Densité d'état de vibration (spectre de vibration)

3N valeurs propres

$$\omega_1 \qquad \omega_2 \qquad \omega_{3N}$$

0 37

$$g(\omega) = \frac{1}{3N} \sum_{i=1}^{3N} \delta(\omega - \omega_i)$$

3N-3 ou 3N-6 en fait (mode de translation, cf. slides suivants)

$$\int_{0}^{+\infty} g(\omega) d\omega = 1$$

36 Exemple : 3 atomes de Si

Optimisation de la géométrie

Symétrie $C_3 \rightarrow 3$ valeurs propres dont 2 dégénérées

Matrice dynamique : 9x9 elements Diagonalisation : 9 valeurs propres, W₁, W₂, ... W₉ 3 degrés de liberté = translation 3 degrés de liberté = rotation \rightarrow reste 3 modes de vibration

³⁷ Représenter les modes de vibration

Par exemple, avec xmakemol

3

Si	0.3486	2.3250	0.4327 atom_vector	-0.5493	-0.1557
Si	2.2772	0.6374	0.4297 atom_vector	0.4173	-0.3989
Si	-0.1258	-0.1623	0.0376 atom_vector	0.1319	0.5546

Cf Démo

Autres logiciels :

Jmol

v_sim : http://inac.cea.fr/L_Sim/V_Sim/user_guide.html#phonons ... to update ..

0.0912

-0.0052

-0.0859

Molécule Si₅

Nombre de modes de vibration ?

39

Molécule Si₅

Nombre de modes de vibration ? $3 \times 5 - 6 = 9$

La diagonalisation donne 15 valeurs propres mais 6 valeurs (petites fréquences) peuvent être négatives → degrés de liberté rotation / translation

Exercice 40 Après Diagonalisation de la MD Molécule Si₅ 0,4 0,3 ท(บ_เ) 0,2 0,1 0 5 15 20 ٥ 10 1×10⁻¹² Convolution par une 8×10⁻¹³ Gaussienne 2 6×10⁻¹³ de largeur 4×10⁻¹³ 0.2 THz 2×10⁻¹³ 0₀ 20 $n_{conv}(v) = \frac{1}{\sqrt{2\pi}} \int n(v') \exp(-\frac{(v-v')^2}{2\sqrt{2}})$ 10 15 5 ω [THz]

⁴¹ Modes de Vibration

Symétrie T_d

Thèse B. Mantisi 2012

23/07/2015

42 Systèmes avec CLP

 $\omega^2 \boldsymbol{U} = \boldsymbol{M} \boldsymbol{U}$

Conditions aux Limites Périodiques (cristaux, amorphes) → pas de degrés de libertés de rotations

3N-3 valeurs propres (-3 ?)

La diagonalisation de la matrice Dynamique donne 3N Valeurs propres !! 3 vp correspondent aux dégrés de liberté de translation (peuvent être négatives)

⁴³ Analyse des modes : Densités d'état partielles

20

20

Densités d'états partielles

44

Densité d'états de vibration totale

$$g(\omega) = \frac{1}{3N} \sum_{i=1}^{3N} \delta(\omega - \omega_i)$$
$$= \sum_{i \in \alpha} g_{\alpha}(\omega)$$

Densité d'états de vibration Partielle

$$g_{\alpha}(\omega_{p}) = g(\omega_{p}) \sum_{i \in \alpha} |V_{i}(\omega_{p})|^{2}$$

$$\sum_{i \in \alpha} \left| V_{I}(\omega_{p}) \right|^{2} = 1$$

 ω_1 Exemple : V^1 *x*,1 $|\mathbf{V}_{1x}(\omega_i)|^2 + |\mathbf{V}_{1y}(\omega_i)|^2 + |\mathbf{V}_{1z}(\omega_i)|^2$ *y*,1 V^1 $=P_1(\omega_i)$ z,1 Contribution de l'atome 1 x,2 à $g(\omega)$ z,2 est $g_1(\omega_i) = g(\omega_i) P(\omega_i)$ x, N*y*,*N*

z, N

Thèse P. GANSTER (2004)

23/07/2015

Génération de la structure amorphe

DM Classique

46

- Modèle en DM classique
- Modèle en DM ab initio
- Validation du modèle de DM classique

Poursuite de la dynamique avec CPMD

DM ab initio

Systèmes de 100 –200 atomes

Institut Mines-Télécom

47 Structure du verre d'oxyde

67 % SiO₂ 12 % Al₂O₃ 21 % CaO

Si et AI : formateurs d'un réseau de tétraèdres SiO₄ et AIO₄ connectés entre eux par des atomes d'oxygène dits pontants (OP)

- modificateur de réseau
 - \Rightarrow brise la connection entre tétraèdres,
 - \Rightarrow atomes d'oxygène non pontants (ONP)

compensateur de charge AlO₄-

48

Propriétés vibrationnelles (neutron)

Après optimisation des géométries (0K)

Comparaison diffusion inélastique des neutrons (ILL)

$$G(\omega) = \frac{1}{3} \sum_{\alpha} \frac{\overline{b}_{\alpha}^2}{m_{\alpha}} g_{\alpha}(\omega)$$

 $\alpha = Si, O, Al, Ca$

Modèles empiriques : bonnes propriétés structurales Moins bonnes propriétés vibrationnelles

Modèles ab initio : bonnes propriétés vibrationnelles (bonne description des forces)

23/07/2015

Institut Mines-Télécom

Densités d'états de vibration partielles

50

Analyse des états de vibration

FIG. 15. The partial VDOS for the projections onto the vibrations of SiO₄ structural units: A_1 stretching (the solid gray line), F_2 stretching (the dashed line), F_2 bending (the dotted line), E bending (the dot-dashed line), solid-unit rotations (the triple dot-dashed line), and their sum (the black solid line) coinciding with the total VDOS. The atomic displacements in SiO₄ units for symmetric (A_1) and asymmetric (F_{2s}) stretching and also F_2 and E bending are shown schematically in the inset. Mode de vibration de SiO_2 (tétraèdres SiO_4)

S.N. Taraskin and S.R. Elliott PRB 56, 8605 (1997)

Figure 1.2: The breathing mode of oxygen atoms in three-fold rings is responsible for the D_2 line in the Raman spectrum of v-SiO₂ [6].

Institut Mines-Télécom

51

Exemple : verre CAS Interaction avec H₂O

- Position initiale
- Position finale
- Cas où il y a dissociation

53

Interaction avec H₂O : reaction chimique

Fig. 2. Density of vibrational modes (density of states) for both configurations (a) and (b) (see Fig. 1).

F. Bouyer et al., J. Solid Stat. Chem. 183, 2786 (2010)

⁵⁴ Phonons et ... Diffusion

23/07/2015

23/07/2015

 $S_{C} = k_{B} \ln \frac{(N+n)!}{n! N!}$

Concentration de défauts (mécanismes lacunaires)

• N_{tot} sites = N + n

N atoms n vacancies Entropie de configuration = Nombre d'Arrangement de n lacunes sur N_{tot} sites

$$C_{N_{tot}}^{n} = \frac{N_{tot}!}{n!(N_{tot}-n)!} = \frac{(N+n)!}{n!N!}$$

$$S_{C} = k_{B} N \ln\left[\frac{(N+n)}{N}\right] + k_{B} n \ln\left[\frac{N+n}{n}\right]$$

$$\ln(n!) \approx n \ln(n) - n$$

Saint-Étienne

$$\frac{\partial (\Delta G)}{\partial n} = 0 \qquad \Delta G = n \cdot H_f - T S_c - nT S_f \\ H_f + k_B T \ln(c_v) - T S_f = 0 \qquad c_v = \exp\left(\frac{-H_f - T S_f}{k_B T}\right)$$

56

57

Concentration de défauts (énergie de formation)

$$c_v = \exp\left(\frac{-H_f - TS_f}{k_B T}\right)$$

OK ? cf. cours de Maylise

58

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Nombre

Nombre de façons de placer le défaut dans la maille élémentaire

Ex. : lacune dans Si :
$$S_{f,conf} = k_B \ln(3)$$

59

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - IS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Désordre vibrationnelle du à l'introduction du défaut

60

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - TS_{f}}{k_{B}T}\right)$$

$$S_f = S_{f,conf} + S_{f,vib}$$

Désordre vibrationnelle du à l'introduction du défaut

Entropie vibrationnelle ?

61 Concentration de défauts (entropie de formation)

62

Concentration de défauts (entropie de formation)

$$c_{v} = \exp\left(\frac{-H_{f} - \mathbf{T}S_{f}}{k_{B}T}\right)$$

$$S_{f} = S_{f,conf} + S_{f,vib}$$
Structure sans
défaut

$$g^{0}(\omega)$$

$$g^{def}(\omega)$$

$$\Delta S_{f,vib}^{def} = \int_{0}^{\infty} [g^{def}(\omega) - g^{0}(\omega)] \varphi(\nu) d\nu$$

0

63 Entropie vibrationnelle

Toutes températures :

$$\Delta S_{f,vib}^{\text{def}} = \int_{0}^{\infty} [g^{\text{def}}(\omega) - g^{0}(\omega)] \varphi(\nu) d\nu$$

Limite haute température :

$$\Delta S_{f,vib}^{\text{def}} \approx 3 Z^{\text{def}} k_B \frac{\overline{\nu}^0 - \overline{\nu}^{\text{def}}}{\overline{\nu}^0}$$

67 Diffusivité et pré-facteur

 $\Delta S_{m,vib}^{\text{def}} = (3Z^{\text{def}} - 1) \ln \left(\frac{\overline{v}^{\text{def}}}{\overline{v}^{\text{def}*}} \right)$

Spectre de phonon Presente Une valeur Propre Negative

(point celle = position instable) \rightarrow cf. methode ART

23/07/2015

D(T, ϵ) = $f_v C_v$ (T, ϵ) d_v (T, ϵ) + $f_i C_i$ (T, ϵ) d_i (T, ϵ) 69 Coefficient d'auto-diffusion total vs (T, ϵ)

Diagramme de prédominance des mécanismes

Mécanismes de diffusion modifiés par la contrainte

P. Ganster, G. Tréglia, A. Saúl, Phys. Rev. B 79, 115205 (2009)

Conclusions

Ce qu'il reste à voir ... 70

Deletione de dienersion (orietouu)

$$m_i \frac{d^2 u_i}{dt^2} = -\sum_j \Phi_{ij} u_j$$

$$\vec{K} \in \text{R.R.} \quad u_i = \frac{1}{\sqrt{m_i}} U_i e^{-i\omega t} e^{i\vec{K} \cdot \vec{R}_i}$$

20

$$\omega^{2}(\vec{K})U_{i} = \sum_{j} \frac{\Phi_{ij}e^{i\vec{K}.\vec{R}_{i}}}{\sqrt{m_{i}m_{j}}}U_{j}$$

lt

23/07/2015

Conclusions

23/07/2015

Ce qu'il reste à voir ...

Autre possibilité d'avoir accès aux phonons :

$$g(\omega) = \frac{1}{k_B T} \int_0^\infty \sum_\alpha m_\alpha \langle \vec{v}_\alpha(t) . \vec{v}_\alpha(0) \rangle_\alpha e^{-i\omega t} dt$$

 \rightarrow dynamique moléculaire de systèmes équilibrés à une température T

 \rightarrow effets anharmoniques \rightarrow systèmes hors équilibres

Intensité IR et Raman \rightarrow constantes diélectriques et moments dipolaire \rightarrow *ab initio*

Diffusion thermique

Conclusions

Ce qu'il reste à voir ...

Méthodes d'exploration des Surfaces d'énergie potentielles (ex. : ART) → chercher à sortir du bassin harmonique

$$\frac{\partial^2 \Phi(\boldsymbol{x})}{\partial \boldsymbol{x}^2} \bigg|_{\boldsymbol{x}_0} = H(\boldsymbol{x}_0)$$

H is a matrix called "**Hessian**" ... diagonalization of H gives the spectrum of $H(\mathbf{x}_0)$ (spectrum is all eigenvalues obtained after diagonalization $\Sigma(H)$)

$$\begin{bmatrix} -1 & 3 & -1 \\ -3 & 5 & -1 \\ -3 & 3 & 1 \end{bmatrix}, \quad \longrightarrow \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2 \end{bmatrix} \qquad \text{If all } \Sigma(\mathsf{H}) < 0 \quad \text{Maximum}$$
$$\text{If all } \Sigma(\mathsf{H}) >< 0 \quad \text{Saddle point} \quad (\mathsf{All} + \text{except one} \text{or All} - \text{exect one})$$

If all $\Sigma(H) > 0$ **Minimum** (harmonic approximation)

73

23/07/2015

Merci pour votre attention

Institut Mines-Télécom

ECOLE MODMAT – ISTRES 2015

74

23/07/2015

Merci pour votre attention

Institut Mines-Télécom

ECOLE MODMAT – ISTRES 2015

Autres grandeurs thermo à partir des phonons

$$Z = \sum_{n=0}^{+\infty} e^{-\beta(\frac{1}{2} + n)\hbar\omega} \quad \text{Where} \quad \beta = \frac{1}{k_B T}$$

$$S = \frac{\partial}{\partial T} \left(\frac{1}{\beta} \ln Z \right) \longrightarrow S = k_B \int [(n+1)\ln(n+1) - n\ln(n)] g(\omega) d\omega$$

where $n = \left(e^{\hbar \omega / k_{BT}} - 1 \right)^{-1}$

$$\langle E \rangle = -\frac{\partial \ln Z}{\partial \beta}$$

$$C_{v} = \frac{\partial \langle E \rangle}{\partial T} \qquad C_{v}(T) = R \int \frac{\left(\frac{\hbar \omega}{k_{B}T}\right)^{2} \exp\left(-\frac{\hbar \omega}{k_{B}T}\right)}{\left(1 - \exp\left(-\frac{\hbar \omega}{k_{B}T}\right)\right)^{2}} G(\omega) d\omega$$

ECOLE MODMAT - ISTRES 2015

76

Autres grandeurs qui peuvent être calculées à partir de g(w)

