

Transport de chaleur

Samy Merabia ILM CNRS and Université Lyon 1

> Ecole d'été « GDR Modmat » July 20-24th, Istres

Introduction - motivations

Vibrations

Thermal conductivity

Phonon spectroscopy

Phonon scattering at interfaces

Nanoscale heat transfer

Gates

2000's

Materials for thermoelectricity

Waste Heat to Electricity

The ideal thermoelectric material is a good electronic conductor, but a poor thermal conductor

Thermoelectricity

and thermal conductivity

Figure of merit

$$Z = \frac{S^2 \sigma}{\lambda_{ph} + \lambda_e}$$

- *S* Coefficient Seebeck
- σ Electronic conductivity
- λ Thermal conductivity

Thermoelectricity

and thermal conductivity

Nanoscale heat transfer

Nanostructured materials

D >> Λ , régime diffusif D $\approx \Lambda$, régime ballistique Si @300 K : Λ > 300 nm

Fourier

Fourier law in anisotropic materials

Superlattices

 λ_{IP} In-plane conductivity

 λ_{CP} Cross-plane conductivity

The flux is not always parallel to the temperature gradient !

Thermal conductivity

Y. Touloukian, *Thermophysical properties of matter*

I LIMIÈRE MATIÈRE

Thermal conductivity

Y. Touloukian, *Thermophysical properties of matter*

Crystalline phases

Metals : electrons Less extent phonons

Semi-conductors : mainly phonons

Other excitations : magnons etc not discussed

Disordered phases

Phonons and diffusons

Electronic thermal conductivity

Wiedemann Franz law $\frac{\lambda_e}{\sigma T} = L$ Lorenz number

$$L_0 = \frac{\pi^2 k_B^2}{3e^2}$$
$$L_0 = 2.44 \, 10^8 \, V^2 \, K^{-2}$$

Chap. 1.2 THERMAL CONDUCTIVITY OF METALS

TABLE 1 Thermal Conductivity of Pure Metals at 273 K.ª

Metal	(W/m-K)	(10 ⁴⁸ m)	L (10 ^{Å8} V ² /K ²)	Ref.
Ag	436	1.47	2.34	11
AI	237	2.43	2.10	12
Au	318	2.03	2.39	13
Ba	23.3	29.8	2.55	14
Be	230	2.8	2.36	15
Ca	186	3.08	2.13	16
Cd	100	6.80	2.49	15
Ce	11.2 (291 K)	80.0	\$ 3.5	17
Co	99 (300 K)	5.99	1.98 (300 K)	18
Cr	95.7 (280 K)	11.8	4.11	19
Cs	37 (295 K)	18.0	2.5 (295 K)	20
Cu	402 (300 K)	1.73 (300 K)	2.31 (300 K)	21
Dy	10.4 (291 K)	93	3.75 (291 K)	22
Er	13.8 (291 K)	79	3.75 (291 K)	22
Fe	80.2 (280 K)	8.64	2.57 (280 K)	23
Ga (jj c)	16.0	50.3	2.95	19
(jja)	41.0	16.1	2.41	19
(jj b)	88.6	7.5	2.43	24
Gd	9.1 (291 K)	128	4.2 (291 K)	22
Hf	22.4 (293 K)	31.0 (293 K)	2.45 (293 K)	25
Hg (jjÞ	34.1 (197 K)	14.6 (197 K)	2.53 (197 K)	26
(?Þ	25.9 (197 K)	19.3 (197 K)	2.55 (197 K)	26
Но	11.8 (300 K)	78.0 (300 K)	3.2 (300 K)	27
In	81.0 (280 K)	8.25 (280 K)	2.39 (280 K)	28
Ir	149 (277 K)	4.70	2.57 (277 K)	29
К	98.5	6.20	2.24	30
La	14.0 (291 K)	59	2.9	22
Li	65	8.5	2.05	31
Lu	16.2 (291 K)	\$ 50	3.3 (291 K)	22
Mg	153 (301 K)	4.5 (301 K)	2.29 (301 K)	32
Mn(Þ	7.8 (291 K)	137	4.0 (291 K)	22
Mo	143	4.88	2.56	33
Na	142	4.29	2.23	34
Nb	51.8 (280 K)	13.3	2.53 (280 K)	35
Nd	16.5 (291 K)	58	3.7 (291 K)	22
Ni	93 (280 K)	6.24	2.19 (280 K)	36
Os	87 (323 K)	8.3	2.7 (323 K)	29
Pb	35.5	19.2	2.50	37
Pd	71.7	9.74	2.57	38
Pr	12.8	65	3.1 (280 K)	39
Pt	71.9 (280 K)	9.82	2.59 (280 K)	23
Pu	5.2 (298 K)	\$ 130	2.48 (298 K)	40
Rb	55.8	11.3	2.30	41
Re	49	16.9	3.05	42
Rh	153 (280 K)	4.35	2.46 (280 K)	43
Ru	110 (280 K)	6.7	2.72 (280 K)	43
Sc	21.8	44	4.3	44
Sm	13.4 (291 K)	90	4.3 (291 K)	22
Sn	64	10.6	2.48	15
Sr	51.9	11.0	2.18	14
Та	57.7 (280 K)	12.1	2.56 (280 K)	45
Тb	10.4 (291 K)	110	4.25 (291 K)	22
TC	51 (300 K)	16.7	\$ 34 (300 K)	46

Lorenz number

$$L_0 = 2.44 \, 10^8 V^2 K^{-2}$$

Tritt, thermal conductivity

²⁸

What is a phonon ?

Vibrations

Vibrations : assumptions

-adiabatic assumption

-harmonic approximation

-quasi-classical treatment

Dynamics of a monoatomic hain C $\xrightarrow{u_{n-1}} \mathbf{C} \xrightarrow{u_n}$ Equations of motion : $m \frac{d^2 u_n}{dt^2} = C(u_{n+1} + u_{n-1} - 2u_n)$ $k = \frac{2\pi p}{N} (p integer)$ Solutions : $u_n(t) = q_k \exp(i(kna - \omega(k)t))$ 0,0 9'0 max 9'0 **Dispersion relation :** 0,4

$$\omega(k) = \left(\frac{4C}{m}\right)^{1/2} |\sin\left(\frac{ka}{2}\right)|$$

INSTITUT LUMIÈRE MATIÈRE Dynamics of a monoatomic chain

Dispersion relation

$$\omega(k) = \left(\frac{4C}{m}\right)^{1/2} \left|\sin\left(\frac{ka}{2}\right)\right|$$

Phase velocity

$$v_{\varphi}(k) = \left(\frac{4C}{m}\right)^{1/2} \sin\left(\frac{ka}{2}\right)/k$$

Group velocity

$$v_g(k) = \left(\frac{C}{m}\right)^{1/2} a \cos\left(\frac{ka}{2}\right)$$

Dispersion relation

Dispersion relation

Dynamics of a diatomic chain

$$\frac{U_{n-1}}{C} = -c(u_n - U_{n+1}) - C(u_n - U_n)$$

Solutions : $U_n(t) = Q_k \exp(i(kna - \omega(k)t))$ $u_n(t) = q_k \exp(i(k(n + \frac{1}{2})a - \omega(k)t))$ Dispersion relation :

Dispersion relation :

$$\omega^{2}(k) = (M+m) \frac{(C+c)}{2Mm} \pm \frac{((M+m)^{2}(C+c)^{2} - 16MmCc\sin^{2}(ka/2))^{1/2}}{2Mm}$$

Dynamics of a diatomic chain

Optical vs acoustic modes

Acoustical mode

i L M Three dimensional dispersion curve

Harmonic Hamiltonian :
$$H = H_0 + \frac{1}{2} \sum_{i,j} \Phi_{ij}^{\alpha\beta} u_i^{\alpha} u_j^{\beta}$$

$$\alpha, \beta \in x, y, z$$

Harmonic force constants

Equations of motion : $m_i \frac{d^2 u_i^{\alpha}}{dt^2} = -\sum_j \Phi_{ij}^{\alpha,\beta} u_j^{\beta}$

Solution :

$$u_{i}^{\alpha} = \frac{Q_{\vec{k}}}{\sqrt{m_{i}}} e_{\alpha}(\vec{k}) \exp(i(\vec{k} \cdot \vec{r_{i}} - \omega t))$$

Polarisation vector

$$D_{\alpha,\beta}(\vec{k})e_{\beta}(\vec{k}) = \omega^{2}(\vec{k})e_{\alpha}(\vec{k})$$
Dynamic matrix :
$$D_{ij}^{\alpha,\beta} = \frac{1}{\sqrt{m_{i}m_{j}}}\Phi_{ij}^{\alpha\beta}$$

$$D_{\alpha\beta}(\vec{k}) = \sum_{i} D_{ij}^{\alpha\beta} \exp(i\vec{k} \cdot (\vec{r}_{i} - \vec{r}_{i}))$$

Dynamic matrix and dispersion relations

Dynamic matrix :

$$D_{ij}^{\alpha,\beta} = \frac{1}{\sqrt{m_i m_j}} \Phi_{ij}^{\alpha\beta} \qquad D_{\alpha}$$

$$D_{\alpha\beta}(\vec{k}) = \sum_{j} D_{ij}^{\alpha\beta} \exp(i\vec{k} \cdot (\vec{r}_{j} - \vec{r}_{i}))$$

$$D_{\alpha,\beta}(\vec{k})e_{\beta}(\vec{k})=\omega^{2}(\vec{k})e_{\alpha}(\vec{k})$$

Properties : $D_{ij}^{\alpha,\beta} = D_{ji}^{\beta,\alpha}$

$$D_{lphaeta}(ec{k}) = D^*_{etalpha}(-ec{k})$$

 $D_{ii}^{\alpha,\beta} = D_{ii}^{\alpha,\beta}$ $D_{\alpha\beta}(\vec{k}) = D_{\alpha\beta}^*(-\vec{k})$ (inversion symmetry)

$$\forall i, \Sigma_j D_{ij}^{\alpha\beta} = 0 \rightarrow D_{\alpha\beta}(\vec{k} = \vec{0}) = 0$$

(acoustic rule)

ILLINE Phonon dispersion in gold

Transverse modes

Displacement perpendicular to k

Longitudinal mode

Displacement parallel to k

A. Alkurdi, C. Adessi et al.

 \vec{b}

Dispersion relations for complex crystals

Eigenmodes:
$$u_i^{\alpha}(\vec{b}) = \frac{Q_{\vec{k}}}{\sqrt{m_i}} e_{\alpha}(\vec{k}, \vec{b}) \exp(i(\vec{k} \cdot \vec{r}_i(\vec{b}) - \omega t))$$

vector defining the position in the primitive cell

Eigenvalues :

$$\omega^{2}(\vec{k})e_{\alpha}(\vec{k},\vec{b}) = \sum_{\vec{b}'} D_{\alpha\beta}(\vec{k};\vec{b},\vec{b}')e_{\beta}(\vec{k},\vec{b}')$$

 $\omega_s^2(\vec{k}); e_{\alpha,s}(\vec{k},\vec{b})$

Three dimensional crystal : index s Total = 3*p branches with p = number of atoms in the primitive cell

Phonon dispersion in Si

Landry, phD thesis 2009

Phonon dispersion in graphene

2D material

$$g(\omega) = \frac{\omega}{v_{\varphi}(\omega) v_{g}(\omega)}$$

Bending modes dominant at low q

E. Pop, V. Varshney and A.K. Roy, MRS Bull., 37 (2012) 1273

Molecular dynamics

Molecular dynamics : n

$$m \frac{d^2 \vec{r_i}}{dt^2} = -\frac{\partial \Phi}{\partial \vec{r_i}} + \text{thermal bath}$$

Interatomic potential :

$$\Phi = \sum_{i < j} V_2(\vec{r}_{ij}) + \sum_{i < j < k} V_3(\vec{r}_i, \vec{r}_j, \vec{r}_k)$$

Stilinger-Weber potential (Si) :

$$\begin{split} \Phi &= \sum_{i} \sum_{i>j} \nu_1(r_{ij}) + \sum_{i} \sum_{j\neq i} \sum_{k>j} \nu_2(r_{ij}, r_{ik}, \theta_{ijk}) \\ \upsilon_1(r_{ij}) &= A \, \epsilon \, \left(B \left(\frac{\sigma}{r_{ij}} \right)^p - 1 \right) \mathrm{e}^{\frac{\sigma}{r_{ij} - a \, \sigma}} \\ \upsilon_2(r_{ij}, r_{ik}, \theta_{ijk}) &= \lambda \, \epsilon \left(\cos \theta_{ijk} - \frac{1}{3} \right)^2 \mathrm{e}^{\frac{\sigma \gamma}{r_{ij} - a \, \sigma}} \mathrm{e}^{\frac{\sigma \gamma}{r_{ik} - a \, \sigma}} \end{split}$$

Dispersion from molecular dynamics

We use the property :

$$\Phi_{\alpha,\beta}(\vec{k}) = k_B T G_{\alpha,\beta}^{-1}(\vec{k})$$

Harmonic force constants

Atomic displacement Green's function

$$\Phi_{\alpha,\beta}(\vec{k}) = \sum_{j} \Phi_{\alpha,\beta}(i,j) \exp(i\vec{k} \cdot (\vec{r}_i - \vec{r}_j)) \qquad D_{\alpha,\beta}(\vec{k}) = \frac{1}{m} \Phi_{\alpha,\beta}(\vec{k})$$

 $G_{\alpha,\beta}(\vec{k}) = \langle u_{\alpha}(\vec{k}) u_{\beta}^{cc}(\vec{k}) \rangle \qquad \qquad u_{\alpha}(\vec{k}) = \sum_{i} u_{\alpha,i} \exp(i\vec{k}\cdot\vec{r}_{i})$

 $G_{\alpha,\beta}(\vec{k}) = \langle r_{\alpha}(\vec{k}) r_{\beta}^{cc}(\vec{k}) \rangle - \langle r_{\alpha}(\vec{k}) \rangle \langle r_{\beta}^{cc}(\vec{k}) \rangle$

Phonon dispersion measured directly from molecular dynamics simulations ${}^{\diamond}$

Ling Ti Kong

School of Materials Science and Engineering, Shanghai Jiao Tong University, 800 Dongchuan Road, Minhang, Shanghai 200240, China

FCC Cu

Implemented in LAMMPS

« fix phonon« command

Vibrational density of states

Definition
$$g(\omega) = \frac{1}{V} \sum_{k} \delta(\omega - \omega_{k})$$

Identity
$$g(\omega) \propto \int_{0}^{+\infty} C_{vv}(t) \exp(i\omega t) d\omega$$

$$C_{vv}(t) = \langle \vec{v}_i(t) \cdot \vec{v}_i(0) \rangle$$

See Dove « Introduction to lattice dynamics »

Silicon crystalline and amorphous

A. France-Lanord et al., J.Phys. Cond. Mat., 2014

Thermal conductivity

Essentially, two methods :

1. the « direct » method

Apply a temperature gradient or energy flux and calculate the conductivity with Fourier law

2. equilibrium method

Probe the fluctuations around equilibrium of the energy flux vector

1. Thermal conductivity : 1. Thermal conductivity : the direct method

Thermal conductivity : the direct method

Finite size effect analysis

« Bulk » thermal conductivity

 $1/\Lambda(L) = 2/L + 1/\Lambda(L \to \infty)$

Thermal conductivity : direct method

Advantages : - relatively easy to implement using open sources codes (LAMMPS) -may be used also to compute the thermal boundary resistance

Inconvenients : -need to check if we are in the linear regime => analyze different heat fluxes -severe finite size effects ! => analyze different system sizes to properly extrapolate a « bulk » conductivity

LIVE Thermal conductivity : Green-Kubo equilibrium simulations

Green-Kubo formula :

$$\lambda_{\alpha,\beta} = \frac{1}{V k_B T^2} \int_0^{+\infty} \langle J_{\alpha}(t) J_{\beta}(0) \rangle dt$$

Heat flux vector :
$$\vec{J} = \frac{d}{dt} (\sum_i E_i \vec{r}_i)$$

$$\vec{J} = \sum_{i} E_{i} \vec{v}_{i} + \frac{1}{2} \sum_{i \neq j} \vec{F}_{ij} \cdot (\vec{v}_{i} + \vec{v}_{j})$$

In practice, run in NVE ensemble

i LM Thermal conductivity : INSTITUT CETEREN-Kubo equilibrium simulations

Green-Kubo formula :

$$\lambda_{\alpha,\beta} = \frac{1}{V k_B T^2} \int_0^{+\infty} \langle J_{\alpha}(t) J_{\beta}(0) \rangle dt$$

Example amorphous Si 300 K

ILV Thermal conductivity : INSTITUT LUM**Green-Kubo equilibrium simulations**

Optical modes

$$\lambda(\omega) = \frac{1}{V k_B T^2} \int_0^\infty \langle J(t) J(0) \rangle \exp(i \omega t) dt$$

Termentzidis, SM, Chantrenne IJHMT 2011

LIVE Thermal conductivity : Green-Kubo equilibrium simulations

Advantages : - less severe finite size effects

 access to the full thermal conductivity tensor in a single simulation (anisotropic materials, superlattices)

Inconvenients : -need to run several independent simulations (usually 10 to 20) -the plateau is sometimes difficult to identity (in principle, in a finite system the Green-Kubo formula should give a vanishing conductivity ...)

Thermal anisotropy

A.F. Lannord, SM, T. Albaret, D. Lacroix, K. Termentzidis, 2014

Thermal conductivity

Thermal conductivity

Local phonon occupation number : $n \equiv n(\vec{k}, s, \vec{r}, t)$

Boltzmann transport equation :

Mean free path

$$\frac{\partial n}{\partial t} + \vec{v_g} \cdot \vec{\nabla} n = \left(\frac{\partial n}{\partial t}\right)_{coll}$$

Single relaxation time approximation :
$$\frac{\partial n}{\partial t} + \vec{v_g} \cdot \vec{\nabla} n = -\frac{(n - n_{eq})}{\tau(\vec{k}, s)}$$

Thermal conductivity :
$$\lambda = \frac{\rho}{3} \int_{0}^{\omega_{max}} g(\omega) C_{\nu}(\omega) v_{g}^{2}(\omega) \tau(\omega) d\omega$$

$$\lambda = \frac{1}{3} \Sigma_{\vec{k}} c_v v_g \Lambda_{\vec{k}}$$
$$\Lambda(\omega) = v_g \tau(\omega)$$

Three phonons Umklapp processes $:\tau^{-1}(\omega, T) = A \omega^2 T \exp(-B/T)$

Klemens formula
$$\tau^{-1}(\omega, T) = \gamma^2 \frac{k_B T}{M v^2} \frac{\omega^2}{\omega_D^2}$$

P.G. Klemens, « Solid State Physics » Academic Press New-York 1958

Other relaxation mechanisms

L

Boundary scattering $\tau_b = \frac{v}{L}$

specular scattering

 m_i

Point defects
$$\tau_m^{-1} = V \left(\frac{m_i - m}{m}\right)^2 \frac{\omega^4}{4 \pi v^3}$$

Other relaxation mechanisms

L

Boundary scattering $\tau_b = \frac{V}{L}$

specular scattering

Point defects
$$\tau_m^{-1} = V \left(\frac{m_i - m}{m}\right)^2 \frac{\omega^4}{4 \pi v^3}$$

Dislocations $\tau_d^{-1} = N_d b^2 \omega$

diffuse scattering

number of dislocation lines per unit area

Other relaxation mechanisms

L

C

Boundary scattering $\tau_b = \frac{v}{L}$

specular scattering

Point defects
$$\tau_m^{-1} = V \left(\frac{m_i - m}{m}\right)^2 \frac{\omega^4}{4 \pi v^3}$$

Dislocations $\tau_d^{-1} = N_d b^2 \omega$

number of dislocation lines per unit area

Grain boundaries $\tau_g \simeq \frac{v}{d}$

diffuse scattering

 \boldsymbol{m}

 m_i

Thermal conductivity

Phonon-phonon scattering :Perturbation theory

Hamiltonian :

 $H = H_0 + H'$

$$P_i^f = \frac{2\pi}{\bar{h}} |\langle i | H' | f \rangle|^2 \rho(E_i) \delta(E_f - E_i)$$

E. Fermi

Initial state

INSTITUT LUMIÈRE MATIÈRE

 E_{f}

 E_i

Final state

Initial state

Final state

Thermal conductivity : perturbation Hamiltonian

Reference Hamiltonian : (harmonic crystal)

$$H_{0} = \frac{1}{2} \sum_{i,j,\alpha,\beta} \Phi_{ij}^{\alpha,\beta} u_{i,\alpha} u_{j,\beta}$$
$$H_{0} = \sum_{\vec{k},s} \hbar \omega(\vec{k},s) \left(\hat{a}^{+}(\vec{k},s) \hat{a}(\vec{k},s) + \frac{1}{2} \right)$$

Thermal conductivity : perturbation Hamiltonian

Reference Hamiltonian : (harmonic crystal)

$$H_{0} = \frac{1}{2} \sum_{i,j,\alpha,\beta} \Phi_{ij}^{\alpha,\beta} u_{i,\alpha} u_{j,\beta}$$
$$H_{0} = \sum_{\vec{k},s} \hbar \omega(\vec{k},s) \left(\hat{a}^{\dagger}(\vec{k},s) \hat{a}(\vec{k},s) + \frac{1}{2} \right)$$

Perturbation Hamiltonian :

$$H' = \frac{1}{6} \sum_{i,j,k,\alpha,\beta,\gamma} X_{ijk}^{\alpha,\beta,\gamma} u_{i,\alpha} u_{j,\beta} u_{k,\gamma}$$

$$\begin{aligned} H' = & \sum_{\vec{k}, s, \vec{k}', s', \vec{k}'', s''} \delta_{\vec{G}, \vec{k} + \vec{k}' + \vec{k}''} V(\vec{k}, s, \vec{k}', s', \vec{k}'', s'') \\ (\hat{a}^+(\vec{k}, s) - \hat{a}(-\vec{k}, s))(\hat{a}^+(\vec{k}', s') - \hat{a}(-\vec{k}', s'))(\hat{a}^+(\vec{k}'', s'') - \hat{a}(-\vec{k}'', s'')) \end{aligned}$$

 \vec{G} : Reciprocal lattice vector

Momentum (non) conservation

Normal processes $\vec{k} = \vec{k}' + \vec{k}$

Momentum (non) conservation

Normal processes $\vec{k} = \vec{k}' + \vec{k}$

Three phonon processes

$$\hat{a^{+}}(\vec{k})\hat{a^{+}}(\vec{k}')\hat{a^{+}}(\vec{k}'')$$

Simultaneous creation of three phonons

 $\hat{a}^{+}(\vec{k})\hat{a}^{+}(\vec{k}')\hat{a}(\vec{k}'')$

Destruction of two phonons and creation of one phonon

$$\hat{a^{+}}(\vec{k})\hat{a}(\vec{k}')\hat{a}(\vec{k}')$$

Destruction of one phonon and creation of two phonons

 $\hat{a}(\vec{k})\hat{a}(\vec{k}\,')\hat{a}(\vec{k}\,'\,')$

Simultaneous destruction of three phonons

Three phonon processes

$$\hat{a}^{+}(\vec{k}) \hat{a}^{+}(\vec{k}') \hat{a}(\vec{k}'')$$

Destruction of two phonons and creation of one phonon

$$\hat{a^+}(\vec{k})\hat{a}(\vec{k}')\hat{a}(\vec{k}')$$

Destruction of one phonon and creation of two phonons

Only these processes do not violate energy conservation !!

Single relaxation time

Class 1 events :

$$\frac{1}{\tau(\vec{k})} = \sum_{\vec{k}',\vec{k}''}^{\vec{G}} |\gamma|^2 n'_{eq} \frac{(n''_{eq}+1)}{(n_{eq}+1)} \delta(\omega + \omega' - \omega'')$$

Single relaxation time

Class 1 events :
$$\frac{1}{\tau(\vec{k})} = \sum_{\vec{k}',\vec{k}''}^{\vec{G}} |\gamma|^2 n'_{eq} \frac{(n''_{eq}+1)}{(n_{eq}+1)} \delta(\omega + \omega' - \omega'')$$

High temperature regime : $n'_{eq} \simeq \frac{k_B T}{\hbar \omega'}$ $n_{eq} + 1 \simeq \frac{k_B T}{\hbar \omega'}$

$$\frac{1}{\tau(\vec{k})} = k_B T \Sigma_{\vec{k}',\vec{k}''}^{\vec{G}} |\gamma|^2 \frac{\omega}{\omega'\omega''} \delta(\omega + \omega' - \omega'')$$

Difficult to estimate because Dispersion : $\omega' \equiv \omega'(\vec{k}')$

Crystal anisotropy : $\omega' \neq \omega'(|\vec{k}'|)$

Polarisation :
$$\vec{k}' \equiv (\vec{k}', s)$$

Some references

Isotropic crystal, no polarisation

P.G. Klemens, « Solid State Physics » Academic Press New-York 1958

J. Callaway, « Model for lattice thermal conductivity at low temperatures », Phys. Rev. 1958

Effect of the crystal anisotropy

C. Herring, « Role of low-energy phonons in thermal conduction », Phys. Rev. 1954

Effect of the normal processes :

P. Carruthers, « Theory of thermal conductivity of solids at low temperatures » Rev. Mod. Phys. 1961

Effect of the polarisation

M.G. Holland, « Analysis of lattice thermal conductivity », Phys. Rev. 1963

'Exact' model for a model crystal

A.A. Maradudin and A.E. Fein, « Scattering of neutrons by an anharmonic crystal », Phys. Rev., 1962

Phonon spectroscopy

Thermal conductivity : (single relaxation time approximation)

$$\lambda = \sum_{\vec{k},\nu} c_{\nu}(\vec{k},\nu) v_{g}(\vec{k},\nu) \Lambda(\vec{k},\nu)$$

Phonon mean free path :

$$\Lambda(\vec{k}, \mathbf{v}) = |\vec{v_g}(\vec{k}, \mathbf{v})| \tau(\vec{k}, \mathbf{v})$$

Importance to calculate the phonon lifetimes :

-understand the physical mechanisms at play in Umklapp and/or normal process

-use the phonon lifetimes in a Monte-Carlo simulation based on the solution of Boltzmann's equation :

$$\frac{\partial f(\vec{k}, \mathbf{v})}{\partial t} + \vec{v_g} \cdot \vec{\nabla} f(\vec{k}, \mathbf{v}) = -\frac{f - f_{eq}(\vec{k}, \mathbf{v})}{\tau(\vec{k}, \mathbf{v})}$$

allows large scale simulations-> nanowires, superlattices ...

Phonon lifetimes : some elements of history INSTITUT LUMIÈRE

Longitudinal

0.75

1.00

First computation of phonon lifetimes in MD goes back to 1986 !

Small system sizes = limited range of k values, but this idea was there

ILUMIÈRE MATIÈRE Phonon lifetimes : Some elements of history

First computation of phonon lifetimes in MD goes back to 1986 !

Ladd, Moran and Hoover, *Phys. Rev. B*, 34 (1986) 5058

Small system sizes => limited range of k values, but this idea was there

Until 2004....almost nothing ! McGaughey, Kaviany, *Phys. Rev. B* 69 (2004) 094303

Since then, considerable amount of work to describe : -silicon (Henry and Chen, *J. Comp. Theo. Nanores.*, 2008) -alloys (Larkin and Mcgaughey, *J. App. Phys.* 114 (2013) 023507) -amorphous solids (He, Donadio, Galli, *App. Phys. Lett.*, 98 (2011)144101 -polymers (Henry and Chen, *Phys. Rev. B* 79 (2009) 144305)

How to put it in practice ?

1. Determine the harmonic frequencies and eigenvectors :

 $\omega^{2}(\vec{k})\vec{e}(\vec{k})=D(\vec{k})\cdot\vec{e}(\vec{k})$ dynamic matrix

2. Run MD simulations and compute the normal coordinates :

$$Q(\vec{k},t) = \Sigma_i \left(\frac{m_i}{N}\right)^{(1/2)} \exp\left(i\vec{k}\cdot r_i^0\right)\vec{e}_i(\vec{k})\vec{u}_i(t)$$

3. Calculate the kinetic and potential energies : $T(\vec{k},t) = \frac{1}{2} \frac{dQ}{dt}(\vec{k}) \frac{dQ}{dt}(-\vec{k})$

$$U(\vec{k},t) = \frac{1}{2}\omega^2(\vec{k})Q(\vec{k})Q(-\vec{k})$$

 $E(\vec{k},t) = T(\vec{k},t) + U(\vec{k},t) \qquad \tau(\vec{k}) = \int_0^\infty \frac{\langle E(\vec{k},t) E(\vec{k},0) \rangle}{\langle E(\vec{k},t)^2 \rangle} dt$ But this route doesnot give access to the anharmonic frequencies $\omega_a(\vec{k})$!!

How to extract the phonon lifetime of mode k ?

$$\frac{\langle T(\vec{k},t)T(\vec{k},0)\rangle}{\langle T^{2}(\vec{k},t)\rangle} = \cos^{2}(\omega_{a}(\vec{k})t)\exp(-t/\tau(\vec{k}))$$

$$\frac{\langle E(\vec{k},t) E(\vec{k},0) \rangle}{\langle E^2(\vec{k},t) \rangle} = \exp(-t/\tau(\vec{k}))$$

$$\tau(\vec{k}) = \int_0^\infty \frac{\langle E(\vec{k},t) E(\vec{k},0) \rangle}{\langle E(\vec{k},t)^2 \rangle} dt$$

Turney, Landry, McGaughey, Amon, Phys. Rev. B, 2009

Alternative computation : the frequency domain decomposition

3. Calculate the kinetic and potential energies : $T(\vec{k},t) = \frac{1}{2} \frac{dQ}{dt} (\vec{k}) \frac{dQ}{dt} (-\vec{k})$

Expectation value:
$$\langle T(\vec{k},t)\rangle = \lim_{\tau_0 \to \infty} \frac{1}{2\tau_0} \int_0^{\tau_0} \frac{dQ}{dt} (\vec{k},t) \frac{dQ}{dt} (-\vec{k},t) dt$$

Parseval theorem :
$$\langle \tilde{T}(\vec{k},\omega) \rangle = \omega^2 |\tilde{Q}(\vec{k},\omega)|^2$$

 $\tilde{Q}(\vec{k},\omega) = \lim_{\tau_0 \to \infty} \frac{1}{\sqrt{2\pi}} \int_0^{\tau_0} Q(\vec{k},t) \exp(-i\omega t) dt$

Spectral energy density

$$\langle \tilde{T}(\vec{k},\omega) \rangle = C(\vec{k}) \frac{1/2\pi\tau(\vec{k})}{(\omega_a(\vec{k}) - \omega)^2 + (1/4\pi\tau(\vec{k}))^2}$$

Alternative computation : the frequency domain decomposition

Spectral energy density

$$\langle \tilde{T}(\vec{k},\omega) \rangle = C(\vec{k}) \frac{1/2\pi\tau(\vec{k})}{(\omega_a(\vec{k}) - \omega)^2 + (1/4\pi\tau(\vec{k}))^2}$$

Example LJ Argon, 10 K

Turney, Landry, McGaughey, Amon, Phys. Rev. B, 2009

Phonon lifetimes

Thermal conductivity $\lambda = \sum_{\vec{k}} c_{v}(\vec{k}) |v_{g}(\vec{k})| \tau(\vec{k})$

Example LJ Argon, 10 K

Towards large scale simulations :

Boltzmann transport equation :

Accumulation function : phonon spectroscopy

Crystal Si

 $acc(\omega) = \int_{0}^{\omega} c_{v}(\omega) vg(\omega) \Lambda(\omega) d\omega$

Regner et al., Nat. Comm. 2013

Amorphous materials

He, Donadio and Galli, APL 2011

Amorphous materials

Larkin and McGaughey, PRB 2014

Phonon scattering at interfaces

Heat Transfer at the nanoscale

Superlattices

Nanocomposites-nanowires

Si/Ge core-shell nanowire Si/Ge core-shell nanowire Si/Ge core-shell nanowire Si Si Ge Ge

Dresselhaus, Chen, Science 2012

Poulikakos, NanoLetters 2011

-Deviations from Fourier's law (dimensions < phonon mean free path)

-Thermal boundary resistance

Crystalline/amorphous superlattices

Bulk crystalline Si @300 K

 $\lambda = 148 W/K/m$

Bulk amorphous Si @300 K

 $\lambda = 0.68 W/K/m$

6% amorphised Silicon => 20 fold drop in the thermal conductivity

A. France Lanord et al., J. Phys. Cond. Mat. 2014

Thermal boundary (Kapitza) resistance

INSTITUT LUMIÈRE

MATIÈRE

Thermal boundary conductance $G = q / \Delta T$

$$G=1/R=\int C_{v}(\omega)v_{g}(\omega)t_{12}(\omega)d\omega$$

Energy transmission coefficient $G \simeq 1 - 1000 \, MW / m^2 / K$ Equivalent thickness : $l = \lambda / G = 1 - 1000 \, nm$

Hopkins 2013

Acoustic mismatch model (AMM)

W.A. Little (1959)

Phonons treated as plane waves propagating in continuous media

acoustic impendance $Z_i = \rho_i c_i$

Reflection/refraction at the interface obey laws analogous to Snell's laws

$$\frac{\sin\theta_1}{c_1} = \frac{\sin\theta_2}{c_2}$$

$$\text{Fransmission coefficient}: \quad t_{12} = \frac{4Z_1Z_2\cos\theta_1\cos\theta_2}{(Z_1\cos\theta_1 + Z_2\cos\theta_2)^2}$$

Diffuse mismatch model (DMM)

(Swartz 1989)

All the phonons are diffusively scattered by the interface

The transmission coefficient is given by detailed balance

$$\alpha_{12}(\omega) = \frac{c_2 g_2(\omega)}{c_2 g_2(\omega) + c_1 g_1(\omega)}$$

The conductance is related to the overlap between the density of states characterizing the two media

- « Bonding strength» between the two solids
- Lattice parameters mismatch
- Interfacial roughness
- Defects at the interface (vacancies)
- Intermixing
- Electron-phonon coupling

Non-equilibrium simulations

Thermal boundary resistance : $R = \Delta T/J$

Equilibrium simulations

Puech formula

$$G = \frac{1}{A k_B T^2} \int_0^{+\infty} \langle q(t) \cdot q(0) \rangle dt$$

A interfacial area

Analogous to the Green-Kubo formula for the thermal conductivity

> Interfacial flux : $q = \sum_{i \in 1, j \in 2} \vec{F}_{ij} \frac{(\vec{v}_i + \vec{v}_j)}{2}$

Barrat and Chiaruttini, *Mol. Phys.* 2003 SM and Termentzidis, *PRB* 2012

Equilibrium simulations

Equivalent formula

$$G = \frac{-1}{A k_B T^2} \left(\frac{dC_{EE}}{dt} \right)_{t=0}$$

$$C_{EE}(t) = \langle \delta E(t) \delta E(0) \rangle$$

$$C_{EE}(t) \sim C_{EE}(0) \exp(-t/\tau)$$

$$G = \frac{1}{Ak_B T^2} \frac{C_{EE}(0)}{\tau}$$

SM and Termentzidis, PRB 2012

Finite size effects

equilibrium

« Approach to equilibrium »

Temperature relaxation

Finite size effects

$$\Delta T(t) \propto \exp(-t/\tau)$$
$$G = C_{v}/(A\tau)$$

E. Lampin et al., APL 2012

Comparison with the models

Thermal boundary resistance

A. France Lanord et al., J. Phys. Cond. Mat., 2014

Phonon transmission coefficient

crystalline Si/heavy Si interface

MATIÈRE

INSTITUT LUMIÈRE

Transmission coefficient

First paper : Shelling, Keblinski APL 2002

Phonon transmission coefficient

metal

G

pl

Electron-phonon couplings

Two temperature model

$$c_{\rm e} \partial_t T_{\rm e} = k_{\rm e} \partial_{xx}^2 T_{\rm e} - G(T_{\rm e} - T_{\rm p}),$$

$$c_{\rm p} \,\partial_t T_{\rm p} = k_{\rm p} \,\partial_{xx}^2 T_{\rm p} + G(T_{\rm e} - T_{\rm p}),$$

 $c_{\rm s} \partial_t T_{\rm s} = k_{\rm s} \partial_{xx}^2 T_{\rm s}.$ + boundary conditions $-k_{\rm s} \partial_x T_{\rm s} = \sigma_{\rm e} (T_{\rm e} - T_{\rm s}) + \sigma_{\rm p} (T_{\rm p} - T_{\rm s}),$ $= -k_{\rm e} \partial_x T_{\rm e} - k_{\rm p} \partial_x T_{\rm p}.$

Measurements : Hopkins et *al. JAP* 2009

non-metal substrate

Theory :

Sergeev, *PRB* 1998 Mahan, *PRB* 2009

MATIÈRE

Two temperature model

$$c_{e} \frac{\partial T_{e}}{\partial t} = k_{e} \partial_{xx}^{2} T_{e} - G(T_{e} - T_{p})$$

$$c_{p} \frac{\partial T_{p}}{\partial t} = k_{p} \partial_{xx}^{2} T_{p} + G(T_{e} - T_{p})$$

$$c_{s} \frac{\partial T_{s}}{\partial t} = k_{s} \partial_{xx}^{2} T_{s}$$

Boundary conditions

$$x = h$$

$$J = -k_s \partial_x T_s = \underbrace{\sigma_e}_{e} (T_e - T_s) + \underbrace{\sigma_p}_{e} (T_p - T_s)$$

$$= -k_e \partial_x T_e - k_p \partial_x T_p$$

J. Lombard et al. J. Phys. Cond. Mat. 2015

J. Lombard et al. J. Phys. Cond. Mat. 2015

Heat transport at solid/liquid interfaces

Heat transfer at solid/liquid interfaces

Wen, Int. J. Hyperthermia, 2009

$$\frac{\partial T_p(t)}{\partial t} = -\frac{3G}{Rc_p} [T_p(t) - T_m(R,t)],$$
$$c_m \frac{\partial T_m(r,t)}{\partial t} = \Lambda_m \frac{1}{r} \frac{\partial^2}{\partial r^2} [rT_m(r,t)],$$

300 K 0 *nW*

SM et al., PNAS 2009

Gold Np in octane

Gold nanoparticles in liquid octane

INSTITUT LUMIÈRE

MATIÈRE

Gold nanoparticles in liquid octane

INSTITUT LUMIÈRE

MATIÈRE

Nanobubbles

bubble expansion

Hashimoto et al., J. of Photochemistry and Photobiology C: Photochemistry Reviews (2012)

Biomedical applications

Diagnostic and tumor therapy

Lapotko et al., *ACS Nano* (2010) Lapotko, Cancer (2011)

Questions

Threshold energy to drive nanobubble generation ?

What does control nanobubbles size ?

- => hydrodynamic models
- (phase field)

Fluid modeling

 $\ensuremath{\ensuremath{\mathcal{Q}}}$ Conservation equations : mass, momentum and energy

$$\frac{\partial \rho}{\partial t} = -\nabla(\rho \mathbf{v})$$

$$\frac{\partial(\rho_m \mathbf{v})}{\partial t} = -\nabla(\rho_m \mathbf{v} \cdot \mathbf{v} + \overline{\Pi} - \overline{\sigma})$$

$$\rho_m C_v \left[\frac{\partial T}{\partial t} + (\mathbf{v} \cdot \nabla) T \right] = -l \nabla \cdot \mathbf{v} + \nabla (\lambda \nabla T) + \eta (\nabla \mathbf{v})^2$$

Ø Capillary effects : density functional theory

$$f(\rho,T) = f_{VdW}(\rho,T) + \frac{1}{2}w|\nabla\rho|^2 + f_{surface}$$

Pressure tensor : $\Pi_{\alpha\beta} = \left(\rho \frac{\partial f}{\partial \rho} - f\right) \delta_{\alpha,\beta} + w \partial_{\alpha} \rho \partial_{\beta} \rho$

Laser pulse

Nanoparticle modeling

$$\frac{4}{3}\pi R_{np}^{3} C_{p}^{np} \frac{dT_{np}}{dt} = P_{pulse}H(t_{pulse} - t) - 4\pi R_{np}^{2} \Phi_{th}$$
LASER
Liquid/nanoparticle interface : interfacial conductance
$$\Phi_{conductance} = G_{0}(1 + cos\theta) (T_{np} - T_{surface})$$

Vapor/nanoparticle interface : ballistic thermal transport

$$\Phi_{bal} = \rho_{vap} \sqrt{\frac{2}{m}} \left((k_B T_{np})^{\frac{3}{2}} - (k_B T_{r=R_{bulle}})^{\frac{3}{2}} \right)$$

Threshold for explosive boiling

J.Lombard, T. Biben, SM, PRL (2014)

Maximal size of the nanobubbles

INSTITUT LUMIÈRE

MATIÈRE

Experimental results : A. Siems et al., New J. Phys. 2011

Thank you for your attention !