

First principles based study of the surfaces and interfaces in Li batteries: structure, electronic properties and thermodynamic stability

I. Baraille, G. Vallverdu, H. MartinezEquipe de Chimie Physique, IPREMUniversité de Pau et des Pays de l'Adour

IPREM-ECP

Introduction

Interfaces au sein des batteries Li-ion : approche couplée expérience-théorie

- Compréhension des phénomènes chimiques et électrochimiques de surface :
- ⇒ Développement de connaissances fondamentales sur les matériaux et les interfaces

Couplage XPS-Calculs quantiques

- → Un outil interprétatif : reproduire par le calcul, les bandes de valence XPS pour aider à l'identification d'espèces organiques et inorganiques présentes à l'interface électrode/électrolyte¹
- → Un outil prédictif : s'appuyer sur les résultats XPS pour apporter des informations complémentaires ⇒ structuration du matériau de conversion CuO en cours de cyclage basée sur la modélisation des interfaces solide/solide
- → Un outil d'approfondissement pour la connaissance des phénomènes chimiques à l'échelle atomique : réactivité à la surface des matériaux LiMO₂ (adsorption de sondes gazeuses/ nature et concentration des sites de surface actifs)

[1] J. Electrochem. Soc., 156, A103, 2009

CuO: un matériau de conversion

Phénomènes rédox conduisant à une électrode composite avec coexistence de plusieurs phases au cours du processus électrochimique

Proportion importante d'interfaces solide/solide

Etude des interfaces générées au cours du cyclage de CuO

(couche mince ⇒coll. ICMCB-CEA Liten/ thèse L. Martin)

Meilleure compréhension du comportement du matériau et de sa nanostructuration au cours du cyclage

[1] M. Armand et al., J. nature 451, p. 653 (2008)

[2] J. Cabana et al., Adv. Mater., 22, E170-E192 (2010).

1ère Décharge: insertion Li

Réduction de **CuO** → **Cu₂O** → **Cu**

↗ phase lithiée Li₂O « peroxyde Li₂O₂»

1ère Charge: désinsertion Li

Oxydation de **Cu → Cu₂O**

≥ phase lithiée Li₂O

=> Processus partiellement réversible

Principales interfaces formées Cu₂O/Cu Cu/Li₂O Li₂O/Cu₂O

L. Martin et al., J. Phys. Chem. C DOI: 10.1021/jp3119633

Approche théorique des interfaces solide/solide

Objectif: Apporter des informations sur la nanostructuration du matériau d'électrode en cours de cycle électrochimique

Stratégie: une approche thermodynamique¹

- √ Gamme de potentiels où les phases actives coexistent
- ✓ Détermination des interfaces les plus stables dans l'ensemble grand canonique
- ✓ Modèle structural de l'électrode : travail d'adhésion

Calcul périodiques DFT (Code VASP)

- √ Fonctionnelle PBE
- ✓ Pseudo potentiels PAW
- ✓ Base d'ondes planes (cut off 520 eV)
- ✓ Prise en compte de la polarisation de spin
- ✓ Grille de points k : 6x6x6 or 6x6x1

Formalisme DFT+U pour les électrons d de Cu dans CuO et Cu₂O :

- ✓ Dudarev implementation
- ✓U-J = 4 eV => thermodynamic calculation²
- ✓ U-J = 6.5 eV => magnetism and structural properties³

[1] A-L. Dalverny et al., J. Mat. Chem. 2011, 21,10134

[2] L. Wang et al. PRB, 2006, 73, 195107

Exemple d'interface: $Li_2O(\underline{O})$ – Cu: $Li_{56}O_{32}$ - Cu_{40} non stœchiométrique

Nombre de couches atomiques assez grand

Symétrie de la maille : pas de moment dipolaire

Commensurabilité des phases A et B : quelle direction d'empilement ?

Li₂O

 Cu_2O

Cu

Pm3̄n

- ✓ Bulk phases with atoms on a fcc lattice
- ✓ Most stable surfaces: [111] direction.

Experimental lattice parameters:

a = 4.62 Å

 $Fm\overline{3}m$

a = 4.27 Å

a = 3.62 Å

Interfaces are built following the [111] direction

Hexagonal lattices

2x2x1 for all models

Theoretical lattice parameters : comparison with experimental data (relative error in %)

	Li ₂ O	Cu ₂ O	Cu
a _h (Å)	6.58	6.06 *	5.12
Exp	0.6%	0.3%	0.03%
c _h (Å)	8.06	7.43 *	6.27
Exp	0.8%	0.4%	0.8%

* PBE+U with U-J = 4eV

Commensurabilité des phases A et B : quel paramètre de maille ?

Energie minimale en fonction du paramètre de maille a,

Forces exercées sur les interfaces en fonction du paramètre de maille

Paramètres initiaux pour l'interface A/B

Exemple :
$$\text{Li}_2\text{O/Cu}$$
 : $F_{Li_2O/Cu} = \left[-N_{Li_2O} \frac{dE_{Li_2O}}{da_h} - N_{Cu} \frac{dE_{Cu}}{da_h} \right] = 0$

 N_A , N_B = nombre de groupements formulaires par maille

interface	Li ₂ O-Cu	Li ₂ O-Cu ₂ O	Cu ₂ O-Cu
a_h	6,19	6,37	5,50

Evolution des propriétés électroniques en fonction de la contrainte

Interface	Li ₂ O-Cu	Li ₂ O-Cu ₂ O	Cu ₂ O-Cu	
a _h (Å)	6.19	6.37	5.50	After stacking
Bulk a _b (Å)	6.58 / 5.12	6.58 / 6.06	6.06 / 5.12	Before stacking

Propriétés électroniques peu modifiées par les compressions/extensions des bulks

Total DOS

Quelles interfaces sont les plus stables ?

☼ Ensemble grand canonique ⇒stabilité relative de différents systèmes avec différentes compositions

- Le système est en équilibre chimique et thermique avec les phases bulk
- La grandeur thermodynamique : le grand potentiel

$$\Omega_{A-B} = \frac{1}{2S} \left[\mathsf{E}_{A-B}^{\mathsf{i}} - \sum_{\mathsf{j} \in A-B} \mathsf{N}_{\mathsf{j}} \mu_{\mathsf{j}} \right]$$

 μ_{j} potentiel chimique de l'espèce j

- Contributions entropiques et volumiques négligées

♦ Equilibre chimique :

$$\begin{cases} E_{\text{Li}_2\text{O}}^\text{b} = 2\mu_{\text{Li}} + \mu_{\text{O}} \\ E_{\text{Cu}}^\text{b} = \mu_{\text{Cu}} \end{cases}$$

- Un seul potentiel chimique indépendant

$$\rightarrow \Omega_{A-B} = f(\Delta \mu_{Li}) = f(\mu_{Li} - \mu_{Li(metal)})$$

en relation avec le potentiel électrochimique

☼ Expression du grand potentiel : exemple de l'interface Li₂O-Cu interface

$$\Omega_{\text{Li}_2\text{O-Cu}} = \frac{1}{2S} \Big[E^{\text{i}}_{\text{Li}_2\text{O-Cu}} - N_{\text{Cu}} E^{\text{b}}_{\text{Cu}} - N_{\text{O}} E^{\text{b}}_{\text{Li}_2\text{O}} + (2N_{\text{O}} - N_{\text{Li}}) \Delta \mu_{\text{Li}} + (2N_{\text{O}} - N_{\text{Li}}) E^{\text{b}}_{\text{Li}} \Big]$$

Diagramme de phases théorique : domaine de stabilité thermodynamique des phases CuO, Cu₂O, Cu et Li₂O

$$Cu_2O + 2 Li \rightarrow Cu + Li_2O$$

E=2,14 eV

 $2 \text{ CuO} + 2 \text{ Li} \rightarrow \text{Cu}_2\text{O} + \text{Li}_2\text{O}$

E=2,34 eV

♥ Valeur du potentiel en bon accord avec les valeurs expérimentales

R. Bates, Y. Jumel, Lithium Batteries, Academic Press: London, 1983

Diagramme de phases théorique : domaine de stabilité thermodynamique des phases CuO, Cu₂O, Cu et Li₂O

Quand V diminue (décharge), on forme Li₂O, puis Li₂O₂: désaccord avec les résultats expérimentaux obtenus sur des couches minces

Stabilité relative des interfaces

Réaction de conversion: $Cu_2O + 2 Li^+ + 2 e^- \rightarrow 2 Cu + Li_2O \rightarrow \Delta\mu_{Li} = -2,15 eV \Leftrightarrow V = 2,15 V/Li/Li^+$

Cu,O(O)-(Li)Li,O Cu,O(Cu)-(O)Li,O

Formalisme DFT+U: choix du paramètre U

Valeurs des grands potentiels à $\Delta\mu_{\text{Li}}$ =2.15 eV pour les différentes interfaces en fonction des valeurs de U

Les stabilités relatives des différentes interfaces ne sont pas modifiées par le choix des valeurs de U

Structuration du matériau de conversion

La formation de l'interface A/B est énergétiquement favorable si:

Mélange des particules de A et de B favorisé

→ Surface de contact entre A et B maximisée

→ La formation de l'interface A/B n'est pas énergétiquement favorable si:

$$W_{ad}(A/B) < W_{ad}(A) \text{ et } W_{ad}(B)$$

Agrégation des particules de A et de B favorisée

→ Surface de contact entre A et B minimisée

Structuration du matériau de conversion :

☑ Résultats obtenus par comparaison des valeurs W_{ad}(A/B), W_{ad}(A/A) et W_{ad}(B/B)

Fin de 1ère décharge (+Li)

Coexistence de Cu et Li₂O

→ Tendance à maximiser la surface de contact entre Cu et Li₂O

Fin de 1^{ère} charge (-Li)

Coexistence de Cu₂O et Li₂O

→ Tendance à minimiser la surface de contact entre Cu₂O et Li₂O

Cu,O + 2 Li⁺+2e⁻→ Cu + Li,O

Coexistence de Cu, Cu,O et Li,O

→ Tendance à maximiser la surface de contact entre Cu et Cu₂O et entre Cu et Li₂O

☑ Résultats TEM

<u>Cœur blanc (~5 nm)</u>: Cu <u>Écorce (grise)</u>: phase lithiée

Résultats TEM: A. Boulineau, CEA-Liten)

Domaines blancs: Cu₂O

Domaines gris: phase lithiée

→ La formation de petites particules de Cu à l'interface Li₂O-Cu₂O est favorable

L. Martin et al., J. Mat. Chem, 2012, 22, 22063

Effet de la phase Li₂O₂ au niveau des interfaces : premiers résultats

⇒ La stabilité des interfaces augmente quand Li₂O est remplacé par Li₂O₂ : réorganisation du feuillet (0001) de Li₂O₂ plus facile

c) Terminaison O<u>Li</u>

Interface (Li₂O₂)OLi-Cu

Energies des interfaces Li₂O₂-Cu

- Interfaces Cu/Li₂O₂ privilégiées par rapport à Cu/Li₂O
- ☼ Texturation de type coeur coquille Cu>Li₂O₂>Li₂O avec épaisseur de la couche Li₂O₂ variant en fonction de la charge/décharge

Conclusion et perspectives : matériau de conversion CuO

♦ Au niveau expérimental :

- Identification des phases en présence en fonction de l'état de décharge/charge d'une électrode CuO (film mince) ⇒ détection de Cu₂O, Cu et Li₂O

♦ Au niveau théorique :

- Identification de la composition chimique des interfaces les plus stables en fonction du potentiel ⇒Cu₂O-Li₂O, Cu-Li₂O et Cu-Cu₂O
- Analyse qualitative de la structuration du matériau d'électrode en différents points du cyclage ⇒Bon accord des résultats théoriques avec les résultats expérimentaux (TEM)

Perspectives :

- Etude des interfaces formées avec CuO (facteur limitant la réversibilité) et « Li₂O₂ » (cohérence thermodynamique de cet intermédiaire)
- Analyse quantitative ⇒ Taille des nanoparticules

$$\Delta_{\text{f}} G_{\text{nano}}^{\text{0}} = \Delta_{\text{f}} G_{\text{bulk}}^{\text{0}} + 2 \sum_{j} \nu_{j} \frac{\gamma_{j}}{r_{j}} V_{j}$$

Une stratégie basée sur le couplage expérience/théorie

Adsorption de sondes gazeuses à la surface de l'électrode (SO₂, NH₃)

Adsorption suivie par XPS

Kratos Axis Ultra

Conditions controlées :

- Températures d'activation/adsorption
- Réacteur hermétique

- -Composition chimique
- -Environnement chimique des atomes
- -Structure électronique (DOS)
- -Sensibilité < 10 nm

Calculs DFT périodiques

Cluster: 400 cœurs

Code VASP

- √ Fonctionnelle GGA / GGA+U
- ✓ Pseudo potentiels PAW
- ✓ Base d'ondes planes (Cut off 600 eV)
- ✓ Polarisation de spin

Determination de la nature et de la concentration des sites réactifs à la surface de l'électrode

Compréhension des processus d'adsorption

Application au coating de LiCoO₂ par Al₂O₃

Coating = protection de l'électrode contre la dissolution de Co dans l'électrolyte à haut potentiel pour une amélioration des performances

Formation d'une **solution solide LiCo_{1-x}Al_xO₂** entre le matériau et le coating

LiCoO₂ avec un coating de Al₂O₃

Role protecteur du coating = différence de réactivité de surface des matériaux LiCo_{1,x}Al_xO₂ et LiCoO₂ ?

L. Daheron et al. Chem. Mater. 2009, 21, 5607-5616.

Réactivité à la surface de LiCoO₂ : influence du coating

♦ Analyse des matériaux aprés adsorption de SO₂

Substitution de Co par Al ⇒ nature de l'espèce adsorbée et diminution de la réactivité de surface

Réactivité à la surface de LiCoO₂ : influence du coating

Objectif : comprendre la différence de réactivité induite par la substitution de Co par Al

Stratégie:

Calculs DFT périodiques pour une étude thermodynamique des modes d'adsorption de SO_2 les plus favorables sur LiCo O_2 and α -LiAl O_2

- Calcul des propriétés des bulks : validation des conditions de calcul (hamiltonien DFT, base, grille de points k, valeur de U)
- Calcul des propriétés de surface de LiMO₂
 Quelle surface ?
 Nombre de couches atomiques, largeur du vide
- 3 Calcul des propriétés des systèmes adsorbés SO₂-LiMO₂
 Taux de couverture de la surface : quelle maille ?
 Nature du site d'adsorption : top, bridge, site cationique or anionique

Thèse N. Andreu (2012)

Réactivité à la surface de LiCoO₂ : résultats préliminaires

LiCoO₂ bulk Quelle valeur de U ?

Modèle de surface

Surface non polaire (1 1 0)

L. Daheron et al, J. Phys. Chem. C 2009, ,113, 5843-5852.

Structure électronique de la surface (110) relaxée de LiCoO₂

Surface (110) : premières sphères de coordination et polarisation de spin des atomes Co

➤ Résultats similaires en GGA+U et B3LYP

Coexistence de 2 états de spin pour Co : bas spin pour les couches internes (comme dans le bulk) et haut spin à l'extrême surface

Adsorption de SO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Formation de liaisons entre S et O de surface

Adsorption de SO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Substitution Co/Al → diminution de la réactivité de surface Modification du mode d'adsorption (Redox → acide-base)

N. Andreu et al. J. Phys. Chem. C, 116, 20341, (2012)

Adsorption de CO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Modification de la réactivité pour les oxydes ternaires LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂

Spectres S 2p

Effet du métal de transition M sur la nature des sites actifs

Effet de chaque métal de transition M → surfaces (104) de composés modèles LiMO₂ (M = Ni, Mn, Co), <u>isotructuraux</u> du NMC (R-3m)

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

Bulk

 $LiMnO_2$: U = 2,7 eV

LiNiO₂: U= 6,5 eV

Surface

Surface étudiée : (104) avec 5 couches

atomiques

Adsorption

- **Site d'adsorption :**
 - sulfite : S en top (6 cas)
 - sulfate : S en bridge (4 cas)
- * Recouvrement de la surface :
 - supermaille $2x1 \rightarrow$ recouvrement fort
 - faible interaction entre molécules de SO_2

R. Galakhov et al. Eur. Phys. J. B, 2000, 14, 281.

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

LiNiO₂: formation de sulfates

❖ LiCoO, : formation de sulfites

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

LiNiO₂

 $E_{ads} = -1,079 \text{ eV}$

LiMnO₂

$$E_{ads} = -0.270 \text{ eV}$$

0,02

Visualisation de $\Delta \rho = \rho_f - \Sigma_i \rho_{at,i}$

Conclusion et perspectives : réactivité de surface

♦ Au niveau expérimental :

- Substitution de Al par Co ⇒ Modification et diminution de la réactivité de surface

♦ Au niveau théorique :

- Polarisation de spin de Co d'extrême surface dans LiCoO₂
- Réactivité de surface : adsorption contrôlée par des processus redox ou des interactions acide-base

Perspectives :

- Réactivité des matériaux d'électrodes : oxydes ternaires LiNi_xMn_yCo_zO₂
- Modélisation de l'adsorption de SO₂ sur les matériaux parents LiMO₂ (M=Ni, Mn) : choix de la surface, effet de la polarisation de spin

Acknowledgements

The « energy group » in the Physical Chemistry team

Danielle Gonbeau

Hervé Martinez

Germain Vallverdu

Rémi Dedryvère

PhD students:

Laurence Dahéron

Lucile Martin

Nathalie Andreu

Emilie Guille

M. Minvielle