

First principles based study of the surfaces and interfaces in Li batteries : structure, electronic properties and thermodynamic stability

<u>I. Baraille</u>, G. Vallverdu, H. Martinez Equipe de Chimie Physique, IPREM Université de Pau et des Pays de l'Adour

IPREM-ECP

Introduction

Interfaces au sein des batteries Li-ion : approche couplée expérience-théorie

- Compréhension des phénomènes chimiques et électrochimiques de surface :
- Développement de connaissances fondamentales sur les matériaux et les interfaces

Couplage XPS-Calculs quantiques

- Un outil interprétatif : reproduire par le calcul, les bandes de valence XPS pour aider à l'identification d'espèces organiques et inorganiques présentes à l'interface électrode/électrolyte¹
- Un outil prédictif : s'appuyer sur les résultats XPS pour apporter des informations complémentaires
 structuration du matériau de conversion CuO en cours de cyclage basée sur la modélisation des interfaces solide/solide
- Un outil d'approfondissement pour la connaissance des phénomènes chimiques à l'échelle atomique : réactivité à la surface des matériaux LiMO₂ (adsorption de sondes gazeuses/ nature et concentration des sites de surface actifs)

[1] J. Electrochem. Soc., 156, A103, 2009

CuO : un matériau de conversion

Phénomènes rédox conduisant à une électrode composite avec coexistence de plusieurs phases au cours du processus électrochimique **Proportion importante d'interfaces solide/solide**

Etude des interfaces générées au cours du cyclage de CuO

(couche mince ⇒coll. ICMCB-CEA Liten/ thèse L. Martin) Structure compréhension du comportement du matériau et de sa nanostructuration au cours du cyclage [1] M. Armand et al., J. nature 451, p. 653 (2008)

[2] J. Cabana et al., Adv. Mater., 22, E170-E192 (2010).

Caractérisation physico-chimique par XPS

L. Martin et al., J. Phys. Chem. C DOI: 10.1021/jp3119633

Approche théorique des interfaces solide/solide

Objectif : Apporter des informations sur la nanostructuration du matériau d'électrode en cours de cycle électrochimique

Stratégie : une approche thermodynamique¹

- ✓ Gamme de potentiels où les phases actives coexistent
- ✓ Détermination des interfaces les plus stables dans l'ensemble grand canonique
- ✓ Modèle structural de l'électrode : travail d'adhésion

Calcul périodiques DFT (Code VASP)

✓ Fonctionnelle PBE
✓ Pseudo potentiels PAW
✓ Base d'ondes planes (cut off 520 eV)
✓ Prise en compte de la polarisation de spin
✓ Grille de points k : 6x6x6 or 6x6x1

Formalisme DFT+U pour les électrons d de Cu dans CuO et Cu₂O :

✓ Dudarev implementation ✓ U-J = 4 eV => thermodynamic calculation² ✓ U-J = 6.5 eV => magnetism and structural properties³ [1]

[1] A-L. Dalverny et al., J. Mat. Chem. 2011, **2**1,10134

[2] L. Wang et al. PRB, 2006, **73**, 195107

Exemple d'interface: $Li_2O(\underline{O}) - Cu$: $Li_{56}O_{32}$ - Cu_{40} non stœchiométrique

Nombre de couches atomiques assez grand

Symétrie de la maille : pas de moment dipolaire

Commensurabilité des phases A et B : quelle direction d'empilement ?

Interfaces are built following the [111] direction

Hexagonal lattices

Theoretical lattice parameters : comparison with experimental data (relative error in %)

	Li ₂ O	Cu ₂ O	Cu
a _h (Å)	6.58	6.06 *	5.12
Exp	0.6%	0.3%	0.03%
c _h (Å)	8.06	7.43 *	6.27
Exp	0.8%	0.4%	0.8%

* PBE+U with U-J = 4eV

Commensurabilité des phases A et B : quel paramètre de maille ?

Energie minimale en fonction du paramètre de maille a_h

Forces exercées sur les interfaces en fonction du paramètre de maille

Paramètres initiaux pour l'interface A/B Exemple : Li₂O/Cu : $F_{Li_2O/Cu} = \left[-N_{Li_2O} \frac{dE_{Li_2O}}{da_{l_a}} - N_{Cu} \frac{dE_{Cu}}{da_{l_a}} \right] = 0$

 N_A , N_B = nombre de groupements formulaires par maille

interface	Li ₂ O-Cu	Li ₂ O-Cu ₂ O	Cu ₂ O-Cu
a _h	6,19	6,37	5,50

Evolution des propriétés électroniques en fonction de la contrainte

Total DOS

 $a_{h} = 5.12 \text{ Å}$

 $a_{h} = 5.50 \text{ Å}$

 $a_{h} = 6.19 \text{ Å}$

 $a_{h} = 6.19 \text{ Å}$

 $a_{h} = 5.50 \text{ Å}$

 $-a_{h} = 6.06 \text{ Å}$

5

0

 $a_{h} = 6.37 \text{ Å}$

10

15

- a_b = 6.37 Å

--- $a_{h} = 6.58 \text{ Å}$

30

25

20

15 10

25 -

20

100

50

-20

-15

Density of states

a) Cu

b) Li₂O

c) Cu₂O

Atelier « modélisation des oxydes » 16 septembre 2013, Paris

-10

-5

energy / eV

Quelles interfaces sont les plus stables ?

Ensemble grand canonique stabilité relative de différents systèmes avec différentes compositions

- Le système est en équilibre chimique et thermique avec les phases bulk
- La grandeur thermodynamique : le grand potentiel

$$\Omega_{A-B} = \frac{1}{2S} \left[E^{i}_{A-B} - \sum_{j \in A-B} N_{j} \mu_{j} \right]$$

 μ_i potentiel chimique de l'espèce j

- Contributions entropiques et volumiques négligées

Equilibre chimique :

- Un seul potentiel chimique indépendant

 $\begin{cases} \mathsf{E}^{\mathsf{b}}_{\mathsf{L}i_2\mathsf{O}} = 2\mu_{\mathsf{L}i} + \mu_{\mathsf{O}} \\ \mathsf{E}^{\mathsf{b}}_{\mathsf{C}\mathsf{u}} = \mu_{\mathsf{C}\mathsf{u}} \end{cases}$

 $\rightarrow \Omega_{_{A-B}} = f(\Delta \mu_{_{Li}}) = f(\mu_{_{Li}} - \mu_{_{Li(metal)}})$

en relation avec le potentiel électrochimique

✤ Expression du grand potentiel : exemple de l'interface Li₂O-Cu interface

$$\Omega_{Li_{2}O-Cu} = \frac{1}{2S} \Big[E^{i}_{Li_{2}O-Cu} - N_{Cu} E^{b}_{Cu} - N_{O} E^{b}_{Li_{2}O} + (2N_{O} - N_{Li})\Delta\mu_{Li} + (2N_{O} - N_{Li})E^{b}_{Li} \Big]$$

Diagramme de phases théorique : domaine de stabilité thermodynamique des phases CuO, Cu₂O, Cu et Li₂O

Solution values du potentiel en bon accord avec les valeurs expérimentales

R. Bates, Y. Jumel, Lithium Batteries, Academic Press: London, 1983

Diagramme de phases théorique : domaine de stabilité thermodynamique des phases CuO, Cu₂O, Cu et Li₂O

Quand V diminue (décharge), on forme Li₂O, puis Li₂O₂: désaccord avec les résultats expérimentaux obtenus sur des couches minces

Stabilité relative des interfaces

<u>Réaction de conversion</u>: $Cu_2O + 2Li^+ + 2e^- \rightarrow 2Cu + Li_2O \rightarrow \Delta \mu_{Li} = -2,15 eV \Leftrightarrow V = 2,15 V/Li/Li^+$

 $Cu_2O(\underline{O})-(\underline{Li})Li_2O$ $Cu_2O(\underline{Cu})-(\underline{O})Li_2O$

Formalisme DFT+U : choix du paramètre U

Valeurs des grands potentiels à $\Delta \mu_{Li}$ =2.15 eV pour les différentes interfaces en fonction des valeurs de U

Les stabilités relatives des différentes interfaces ne sont pas modifiées par le choix des valeurs de U

Structuration du matériau de conversion

→ La formation de l'interface A/B est énergétiquement favorable si:

 $W_{ad}(A/B) > W_{ad}(A) \text{ et } W_{ad}(B)$

Mélange des particules de A et de B favorisé

- → Surface de contact entre A et B maximisée
- → La formation de l'interface A/B n'est pas énergétiquement favorable si:

 $W_{ad}(A/B) < W_{ad}(A) \text{ et } W_{ad}(B)$

Agrégation des particules de A et de B favorisée

→ Surface de contact entre A et B minimisée

Interfaces solide/solide dans le matériau de conversion CuO

Structuration du matériau de conversion :

☑ Résultats obtenus par comparaison des valeurs W_{ad}(A/B), W_{ad(}A/A) et W_{ad}(B/B)

Fin de 1^{ère} décharge (+Li)

Coexistence de Cu et Li₂O

➔ Tendance à maximiser la surface de contact entre Cu et Li₂O Fin de 1^{ère} charge (-Li)

Coexistence de Cu₂O et Li₂O

→ Tendance à minimiser la surface de contact entre Cu₂O et Li₂O

$Cu_2O + 2 Li^+ + 2e^- \rightarrow Cu + Li_2O$

Coexistence de Cu, Cu₂O et Li₂O

Tendance à maximiser la surface de contact entre Cu et Cu₂O et entre Cu et Li₂O

Résultats TEM

<u>Cœur blanc (~5 nm)</u>: Cu <u>Écorce (grise)</u>: phase lithiée

Résultats TEM : A. Boulineau, CEA-Liten)

Domaines blancs: Cu₂O Domaines gris: phase lithiée → La formation de petites particules de Cu à l'interface Li_2O-Cu_2O est favorable

L. Martin et al., J. Mat. Chem , 2012, 22 , 22063

Interfaces solide/solide dans le matériau de conversion CuO

Effet de la phase Li₂O₂ au niveau des interfaces : premiers résultats

► La stabilité des interfaces augmente quand Li₂O est remplacé par Li₂O₂ : réorganisation du feuillet (0001) de Li₂O₂ plus facile

c) Terminaison O<u>Li</u>

Interface (Li₂O₂)OLi-Cu

- Interfaces Cu/Li₂O₂ privilégiées par rapport à Cu/Li₂O
- Texturation de type coeur coquille Cu>Li₂O₂>Li₂O avec épaisseur de la couche Li₂O₂ variant en fonction de la charge/décharge

Interfaces solide/solide dans le matériau de conversion CuO

Conclusion et perspectives : matériau de conversion CuO

✤ Au niveau expérimental :

 Identification des phases en présence en fonction de l'état de décharge/charge d'une électrode CuO (film mince) ⇒détection de Cu₂O, Cu et Li₂O

✤ Au niveau théorique :

- Identification de la composition chimique des interfaces les plus stables en fonction du potentiel ⇒Cu₂O-Li₂O, Cu-Li₂O et Cu-Cu₂O
- Analyse qualitative de la structuration du matériau d'électrode en différents points du cyclage ⇒Bon accord des résultats théoriques avec les résultats expérimentaux (TEM)

♦ Perspectives :

- Etude des interfaces formées avec CuO (facteur limitant la réversibilité) et « Li₂O₂ » (cohérence thermodynamique de cet intermédiaire)
- Analyse quantitative ⇒Taille des nanoparticules

$$\Delta_{f}G_{nano}^{0} = \Delta_{f}G_{bulk}^{0} + 2\sum_{j}\nu_{j}\frac{\gamma_{j}}{r_{j}}V_{j}$$

Une stratégie basée sur le couplage expérience/théorie

Adsorption de sondes gazeuses à la surface de l'électrode (SO₂, NH₃)

Kratos Axis Ultra

Adsorption suivie par XPS Kr Micromeritics – Autochem2920

Conditions controlées :

- Températures d'activation/adsorption
- Réacteur hermétique

-Composition chimique -Environnement chimique des atomes -Structure électronique (DOS) -Sensibilité < 10 nm

Calculs DFT périodiques

Cluster : 400 cœurs

<u>Code VASP</u> ✓ Fonctionnelle GGA / GGA+U ✓ Pseudo potentiels PAW ✓ Base d'ondes planes (Cut off 600 eV)

✓ Polarisation de spin

Determination de la nature et de la concentration des sites réactifs à la surface de l'électrode

Compréhension des processus d'adsorption

Application au coating de LiCoO₂ par Al₂O₃

Coating = protection de l'électrode contre la dissolution de Co dans l'électrolyte à haut potentiel pour une amélioration des performances

3 Al₂O₃ LiCo_{1-x}Al_xO₂ LiCoO₂

LiCoO₂ avec un coating de Al₂O₃

Sormation d'une solution solide LiCo₁.xAlxO₂ entre le matériau et le coating

Role protecteur du coating = différence de réactivité de surface des matériaux $LiCo_{1-x}Al_xO_2$ et $LiCoO_2$?

L. Daheron et al. Chem. Mater. 2009, 21, 5607-5616.

Réactivité à la surface de LiCoO₂ : influence du coating

Solution de SO₂

Substitution de Co par AI ⇒ nature de l'espèce adsorbée et diminution de la réactivité de surface

Réactivité à la surface de LiCoO₂ : influence du coating

Objectif : comprendre la différence de réactivité induite par la substitution de Co par Al

Stratégie :

Calculs DFT périodiques pour une étude thermodynamique des modes d'adsorption de SO_2 les plus favorables sur LiCoO₂ and α -LiAlO₂

- Calcul des propriétés des bulks : validation des conditions de calcul (hamiltonien DFT, base, grille de points k, valeur de U)
- Calcul des propriétés de surface de LiMO₂
 Quelle surface ?
 Nombre de couches atomiques, largeur du vide
- Calcul des propriétés des systèmes adsorbés SO₂-LiMO₂
 Taux de couverture de la surface : quelle maille ?
 Nature du site d'adsorption : top, bridge, site cationique or anionique

Thèse N. Andreu (2012)

Réactivité à la surface de LiCoO₂ : résultats préliminaires

Modèle de surface

L. Daheron et al, J. Phys. Chem. C 2009, ,113, 5843-5852.

Structure électronique de la surface (110) relaxée de LiCoO₂

Surface (110) : premières sphères de coordination et polarisation de spin des atomes Co

Résultats similaires en GGA+U et B3LYP

Coexistence de 2 états de spin pour Co : bas spin pour les couches internes (comme dans le bulk) et haut spin à l'extrême surface

Adsorption de SO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Formation de liaisons entre S et O de surface

Adsorption de SO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Substitution Co/Al \rightarrow diminution de la réactivité de surface Modification du mode d'adsorption (Redox \rightarrow acide-base)

N. Andreu et al. J. Phys. Chem. C, 116, 20341, (2012)

Adsorption de CO₂ sur les surfaces (110) de LiMO₂ (M=Al ou Co)

Modification de la réactivité pour les oxydes ternaires LiNi_{1/3}Mn_{1/3}Co_{1/3}O₂

Spectres S 2p

Effet du métal de transition M sur la nature des sites actifs

Effet de chaque métal de transition M \rightarrow surfaces (104) de composés modèles LiMO₂ (M = Ni, Mn, Co), <u>isotructuraux</u> du NMC (R-3m)

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

Bulk

 $LiMnO_{2}$: U = 2,7 eV

 $LiNiO_2$: U= 6,5 eV

Surface

Surface étudiée : (104) avec 5 couches

atomiques

R. Galakhov et al. Eur. Phys. J. B, 2000, 14, 281.
H. Chen et al., *Phys. Rev. B*, 2011, 84, 085108.
F. Zhou et al., *Phys. Rev. B*, 2004, 70, 235121.)

Adsorption

- Site d'adsorption :
 - sulfite : S en top (6 cas)
 - sulfate : S en bridge (4 cas)

Recouvrement de la surface :

- supermaille $2x1 \rightarrow$ recouvrement fort
- faible interaction entre molécules de SO₂

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

LiNiO₂: formation de sulfates

LiCoO₂: formation de sulfites

Adsorption de SO₂ sur la surface (104) de LiMO₂ (M=Co, Ni, Mn)

Conclusion et perspectives : réactivité de surface

✤ Au niveau expérimental :

- Substitution de Al par Co 🗢 Modification et diminution de la réactivité de surface

🏷 Au niveau théorique :

- Polarisation de spin de Co d'extrême surface dans LiCoO₂
- Réactivité de surface : adsorption contrôlée par des processus redox ou des interactions acide-base

♦ Perspectives :

- Réactivité des matériaux d'électrodes : oxydes ternaires LiNi_xMn_yCo_zO₂
- Modélisation de l'adsorption de SO₂ sur les matériaux parents LiMO₂ (M=Ni, Mn) : choix de la surface, effet de la polarisation de spin

Acknowledgements

The « energy group » in the Physical Chemistry team

Danielle Gonbeau

Hervé Martinez

Germain Vallverdu

Rémi Dedryvère

PhD students :

Laurence Dahéron

Lucile Martin

Nathalie Andreu

Emilie Guille

M. Minvielle