Theoretical investigation of vibrational and isotopic properties of iron (oxyhydr)oxides

Marc Blanchard & Etienne Balan

- Iron is the 4th most abundant element in the continental crust (5.1 wt%)
- 2 oxidation states (II, III)

Chemical reactions at the interfaces between iron (oxyhydr)oxides and water play an important role in numerous natural processes:

- Biological availability (essential nutriment)
- Redox processes (weathering, soil formation, BIF)
- Fate and transport of environmental contaminants

Laterite, Brazil (IMPMC)

Acid mine drainage, Ohio (Cornell and Schwertmann 2003)

Iron isotope geochemistry

⁵⁴Fe (5.84 %), ⁵⁶Fe (91.76 %),
⁵⁷Fe (2.12 %), ⁵⁸Fe (0.28 %)

⇒ Proxy complementary to traditional stable isotopes

The most important Fe isotope fractionations occur in low-T environments and with redox gradients.

Planetary formation

Banded Iron Formation

Redox evolution of the ocean

An essential basis for interpreting isotopic compositions in natural samples is to know the <u>equilibrium isotopic fractionation factors</u> Mass-dependent equilibrium isotopic fractionation is <u>controlled by</u> <u>vibrational properties</u>

Need a good description of the vibrational properties (IR, Raman)

For iron (oxyhydr)oxide, occurring most of the time as finely divided minerals, IR spectroscopy is a technique of choice for the <u>identification</u>, for tracking <u>mineral transformations</u>, but also for providing information about the <u>composition</u>, the <u>structural defects</u>, the <u>particle shape</u>...

Transformation of goethite to hematite

Goethite-Hematite, Lubéron (Cornell and Schwertmann 2003)

Al-bearing goethites

FIG. 4. IR spectra of Al-bearing goethites (see Table 2 for compositions of samples). (Blanch et al. 2008, *Miner Mag*)

Hematite morphologies

1

2

(Cornell and Schwertmann 2003)

Theoretical modeling of IR spectra

In the interpretation of IR spectra, first-principles calculations are useful for:

- finding unambiguous relations beween IR spectrum, vibrational modes and crystal structure

-determining the contribution of actual features of mineral samples (e.g. particle shape, defects) to their IR spectrum

For a solid...

The induced polarisation is proportional to the macroscopic electric field existing in the material:

 $4\pi P(\omega) = (\epsilon(\omega) - 1) E(\omega)$ where $\epsilon(\omega)$ is the dielectric tensor

Calculation of the low-frequency dielectric tensor $\varepsilon(\omega)$

$$\boldsymbol{\varepsilon}_{ij}(\omega) = \boldsymbol{\varepsilon}_{ij}(\infty) + \frac{4\pi}{\Omega_0} \sum_{m} \frac{S_{m,ij}}{\omega_m^2 - (\omega + i\Gamma)^2}$$

electronic ionic

$$\mathbf{S}_{m,ij} = \left(\sum_{\tau,i'} \mathbf{Z}^*_{ii',\tau} \mathbf{U}_m(\tau,i')\right) \left(\sum_{\tau',j'} \mathbf{Z}^*_{jj',\tau'} \mathbf{U}_m(\tau',j')\right)$$

- Γ damping coefficient
- $\epsilon(\infty)$ electronic dielectric tensor
- **Z**^{*} Born effective charge tensors
- U_m transverse normal modes
- $\omega_{\rm m}$ transverse vibrational frequencies J

calculated using DFPT: second derivatives of total energy w.r.t. atomic displacements and/or macroscopic electric field

- harmonic approximation, athermal limit
- vibrational modes at the center of Brillouin zone
- accuracy: effective charges ~10 %; frequencies ~ 3 %;
- contains the microscopic information

(Gonze and Lee 1997; Baroni et al. 2001)

Hematite (α -Fe₂O₃)

Rhombohedral symmetry Antiferromagnetic (T < 260 K)

Highway on a hematite-coloured soil, Bolivia (Cornell and Schwertmann 2003)

UANTUMESPRESSO

DFT+U needed to describe correctly electronic

GGA (PBE) + U (3.3 eV) Ultrasoft pseudopotentials Wavefunctions cutoff = 40 Ry 4x4x4 *k*-points

U	•		
	GGA	GGA+U	Exp
a _{hex}	5.023	5.098	5.035
C _{hex}	13.901	13.946	13.747
c _{hex} /a _{hex}	2.77	2.74	2.73
mag. mom. (µ _B)	3.87	4.19	4.6-4.9
Band gap (eV)	0.7	1.5	2.0

Theoretical vs. experimental frequencies of transverse optical modes

Blanchard et al. (2008, Am Miner)

Modeling the powder absorption spectra

Less than 1 wt. % of powder sample is diluted in a non-absorbing matrix

Model:

- ellipsoidal particles
- isolated particles in homogeneous external medium (KBr)
- particle size < λ_{IR} (0.74 300 μ m)

IR absorption depends on the internal macroscopic electric field (≠ applied electric field)

The electric field induced by surface charges in the polarized particles shifts the absorption bands and affects their intensity

 $A(\omega)$ proportional to the orientational and temporal average of the electromagnetic power dissipated in the particles (W(ω)).

W(ω) : function of the external electric field E_{KBr}, and dielectric tensors of the sample $\varepsilon(\omega)$ and external medium ε_{KBr}

$$\longrightarrow W(\omega) \propto |\mathsf{E}_{\mathrm{KBr}}|^2 \omega \operatorname{Im}[\varepsilon(\omega) - \frac{\mathbf{n}.(\varepsilon(\omega) - \varepsilon_{\mathrm{KBr}})^2 \cdot \mathbf{n}}{(3 \ \mathbf{n}.\varepsilon(\omega).\mathbf{n})}]$$

Blanchard et al. (2008, Am Miner)

Broadening related to non-ellipsoidal particles and distribution of particle shapes.

Experimental (top) and theoretical (bottom) IR powder absorption spectra of hematite

c/a c/a 0.4 1.0

Blanchard et al. (2008, Am Miner)

Goethite (\alpha-FeOOH)

Orthorhombic unitcell (*Pbnm*)

GGA (PBE) + U (3.3 eV) Ultrasoft pseudopotentials Wavefunctions cutoff = 40 Ry 4x2x6 k-points

Blanchard et al. (PCM, under review)

Experimental and theoretical (GGA) lattice parameters of goethite versus Al content

Effect of the AI substitution on the theoretical (GGA) IR absorption spectrum of goethite

Conclusions I

• First-principles methods accurate enough to enable a direct comparison with experiment

• A single theoretical framework to interpret the results of various spectroscopic measurements (IR, Raman, NMR, XAS, ...) on complex samples

• Microscopic vs. macroscopic effects in IR powder spectra

Theoretical isotopic fractionation

X isotope exchange between two phases A and B:

$$AX + BX^* \iff AX^* + BX$$

 $\ln (\mathbf{K}) = (\Delta_{\mathbf{A}} - \Delta_{\mathbf{B}}) / \mathbf{kT}$

 $F=-kT \ln (Q) \implies K=(Q_{AX*}/Q_{AX})/(Q_{BX*}/Q_{BX})$

For a crystal, the partition function is: $Q = \left[\prod_{i=1}^{3Nat} \prod_{\{q\}} \frac{e^{-hv_{q,i}/(2kT)}}{1 - e^{-hv_{q,i}/(kT)}}\right]^{1/N_q}$

B-factor = equilibrium isotopic fractionation factor between phase A and an ideal gas of X

From 1st order thermodynamic perturbation theory:

In **Mössbauer**, the kinetic energy of the iron sublattice is related to the second-order Doppler shift (S(T))

$$S(T) = -\frac{K(T)_{57_{Fe}}}{m c}$$
Velocity of light

In Nuclear Resonant Inelastic X-ray Scattering (NRIXS), the kinetic energy is related to the partial vibrational density of state (PDOS)

$$K_{57_{Fe}} = \frac{3}{2} \int_{0}^{e_{\max}} E(e,T)g(e)de$$

Einstein function

PDOS norm. to 1

Computational method

- Density Functional Theory
 (Plane-waves / Ultrasoft pseudopotentials / Experimental cell parameters / GGA+U)
- Hematite (α-Fe₂O₃), hexagonal sym., antiferromagnetic

Atomic positions

	x _{Fe}	x ₀
Calc.	0.1449	-0.0558
Exp.	0.1447	-0.0556

Raman and IR frequencies

The iron β is higher for Fe atoms located next to the Al impurity. The effect is larger when Al is in the edge-sharing octahedron rather than in the corner-sharing or face-sharing octahedron.

Oxygen β -factor of hematite vs Al or H content

• An incorporation of 18 mole % Al_2O_3 in hematite would increase the oxygen β of ~5.5‰ at 0°C. This effect is sufficiently large to be measurable and to affect the interpretation of natural isotopic compositions.

• The effect of H incorporation is found to be negligible. This is explained by a complex local relaxation of the defective structure leading to a compensation of local β values.

• Comparing the data obtained from the different techniques (DFT, Mössbauer, NRIXS) enables to obtain reliable equilibrium isotopic fractionation factors.

• First-principles calculations also allow to investigate the mechanisms controlling isotopic fractionations at the molecular scale (crystallographic sites, surface effect, adsorption processes ...)

