© CNRS / Photothèque – Cyril Frésillon

Polarity in low dimensions: MgO nano-ribbons on Au(111)

J. Goniakowski, C. Noguera

Institut des Nanosciences de Paris , CNRS & Université Pierre et Marie Curie, Paris, France

Catalysis by Supported Metal Nanoclusters

Role of oxide support ?

Heterogeneous catalysis → Surface science

Bulk oxide surfaces \rightarrow ultra-thin oxide films \rightarrow complex oxide/metal systems

Institut des NanoSciences de Paris Metal-supported oxides nano-objects: MgO/Au(111)

Mg@300K

 $p_{02} = 5x10^{-7}$ mbar $p_{H2O} > 1x10^{-9} mbar$

Y. Pan et al., J. Phys. Chem. C 116 11126 (2012).

60x60 nm²

Outline

- Effect of film thickness
- Metal-supported oxide monolayers
- Polarity in low dimensional and finite-size objects
- Compensation of edge polarity

- Triangular MgO(111) 1 ML islands, ~ 100 Å large.
- MgO lattice parameter larger than in MgO bulk.
- MgO zig-zag edges parallel to the Au[110] rows.

Polar materials versus polar surfaces

Bulk ferroelectrics

PbTiO₃ tetragonal ferroelectric phase cubic paraelectric phase 0 Pb Ст ac 00 • Ti ac ат ac 1 Ps $P_{s\neq 0}$ $P_s=0$ PbO PbO Ti⁴⁺ TiO₂ 20²⁻ V V PbO PbO

Jump of the electrostatic potential ΔV due to the charge separation

Polar orientations in non-polar crystals

Polar (111) surface of bulk MgO

(1x1) surface: 2D electron gas

(2x2) surface: Non-stoechiometric reconstructions

Polarity at the nano-scale: ultra-thin oxide films G(N) EF MgO(111) 8.0 graphiticlike(0001) zincblende(111) $\Phi(N)$ rocksalt(111) (2x2)-reconstructed Uncompensated **Strongly thickness-**1 2 ... N-1 N dependent POLAR 6.0 ⁻ormation energy (J/m2) EF Compensated **Bulk-like surface** reconstruction 4.0 POLAR 2 ... N-1 N **Novel crystalline** Non POLAR 2.0 structure EF DFT-GGA (VASP) 2 3 4 5 6 7 Phys. Rev. Lett. 93, 215702 (2004) Phys. Rev. Lett. 98, 205701 (2007) 2 ... N-1 N Flat graphene-like 1ML MgO(111)

Institut des NanoSciences de Paris

Institut des NanoSciences de Paris Polarity at the nano-scale: experimental evidence

Metal-supported ultra-thin films \rightarrow Induced polarity

Electrostatic coupling between charge & structure → induced film polarization

Institut des NanoSciences de Paris Induced polarity + lattice mismatch → patterning

high

Topographic (50 x 50 nm²)

a

low

d(InI)

• systematic reduction of the barrier height $\Delta \Phi < 0$ due to electron density compression at the interface,

• charge transfer and film rumpling dipole moments cancel each other.

- self-limited island growth,
- surface potential driven by the local interface register → barrier enhancement at island edges.

Induced polarity + lattice mismatch \rightarrow modulation of surface potential

1ML FeO(111)/Pt(111)

STM topographic image 4500 mV, 0.1 nA

O@FeO(111)/Pt(111)

2D Lattice of charged Au monomers Au^+ $Au^ Au^-$ Pt(111) Pt(111)

Phys. Rev. Lett. 101, 026102 (2008) Phys. Rev. B 80, 125403 (2009)

Embedded islands of FeO₂ nano-oxide

J. Phys. Chem. C 114, 21504 (2010) Angew. Chem. Int. Ed. 49, 4418 (2010)

Lattice mismatch → oxide film distortion→ steering the growth of metal ad-particles

Edge polarity: low dimensionality

Institut des NanoSciences de Paris Edge polarity: finite size

H >> L: $\mathbf{V}_{WIRE}(d) \sim \ln 1/d \& |\Delta V|, |\Delta V'| \sim \ln L$

- no divergence as function of object size H
- log divergence as function of size of the polar edge L

J. Goniakowski, C. Noguera, Phys. Rev. B 83 115413 (2011).

Compensation of edge polarity: metallization

J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Edge polarity: compensation mechanisms

1 ML MgO(111) nano-ribbons with zig-zag edges: free Au(111)-supported

Au(111) substrate efficiently screens the non-neutrality of dry unreconstructed and of fully hydroxylated zig-zag edges.

J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Institut des NanoSciences de Paris Edge polarity: relative edge/island stability

J. Goniakowski, L. Giordano, C. Noguera, Phys. Rev. B 87 035405 (2013).

Au(111)-supported MgO nano-islands:

Y. Pan et al., J. Phys. Chem. C 116 11126 (2012).

Summary

Mg@550K $p_{O2} = 5x10^{-6} \text{ mbar}$ $p_{H2O} < 2x10^{-10} \text{ mbar}$ Mg@450K p₀₂ = 1x10⁻⁶ mbar Mg@300K $p_{O2} = 5x10^{-7} \text{ mbar}$ $p_{H2O} > 1x10^{-9} \text{ mbar}$

• Effect of film thickness

uncompensated polarity and polarity-drivien structural transformations

 Lattice mismatch + Induced polarity in metal-supported oxide monolayers nano-patterning of structural and electronic characteristics

Different polar behaviour in low dimensional and finite-size objects

linear/logarithmic divergence in 3D/2D, no divergence in 1D (chains) divergence as function of the smaller structural parameter L or H

Compensation of edge polarity

screening by the metal substrate / hydroxylation / reconstruction: stability reversal

C. Noguera, J. Goniakowski, Chem. Rev. 113, 4073 (2013)

Acknowledgments

L. Giordano, G. Pacchioni & F. Guller, A.M. Llois

Dipartimento di Scienza dei Materiali, Università di Milano-Bicocca, Milano, Italy Centro Atomico Constituyentes - San Martin, Argentina

Y. Pan, P. Myrach, N. Nilius & S. Benedetti

Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany CNR-INFM National Research Center on nanoStructures and bioSystems at Surfaces, Modena, Italy

Reducible oxide chemistry, structure and functions COST Action CM1104

