Impact of excess iron on the calculated electronic, magentic, and optical properties of Gallium ferrite

Fatima IBRAHIM

supervisor : Mébarek ALOUANI

Institut de Physique et de Chimie des Matériaux de Strasbourg (IPCMS-DMONS)

Outline

I. Introduction

- Magnetoelectric multiferroics
- Gallium ferrite: a magnetoelectric ferrimagnet

II . Method of calculation

III. Results

- Optimizing calculation parameter: U-value
- Structural properties
- Electronic properties
- Magnetic properties
- Magnetic anisotropy
- Optical properties

IV. Conclusion & perspective

Magnetoelectric multiferroics

Magnetoelectric multiferroics

Magnetoelectric multiferroics

UNIVERSITÉ DE STRASBOURG

Gallium ferrite : a magnetoelectric ferrimagnet

• Experimentally demonstrated:

UNIVERSI

Method

VASP package: PAW formalism

- Including spin-orbit coupling
- Different levels of approximation (LDA GGA)
- Correlated system \rightarrow on-site Coulomb interaction (LDA+U)

• Evolution of the energy band gap & spin moment as a function of U-value

[†] A. M. Kalashnikova et al. JETP Lett. 81, 452 (2005)T. Arima et al. PRB 70, 0644261 (2004)

- Variation of the lattice parameters & volume as function of Fe content

 Structural parameters are sensitive to the excorr and the U-value used

 Unit cell volume increases with the Fe content

[†] S. Mukherjee et al., in press (2012)

Bond lengths for the different octahedral sites

GGA+U=8 eV

Fe1 is distorted mainly along + b-axis

 Fe2 is distorted mainly along - b-axis

Ga2 site is almost regular

• Variation of the energy band gap as function of Fe content

DOS & partial charge plots as function of Fe content

The excess Fe ions
(occupying Ga2 site)
enhance the d-symmetry
of the unoccupied states
reducing band gap

Bader charges per ionic site

Electronic properties

	x = 1	x = 1.1	x = 1.2	x = 1.4
Ga1	+1.788	+1.8	+1.796	+1.798
Ga2	+1.832	+1.85	+1.847	+1.851
Fe1	+1.633	+1.646	+1.641	+1.638
Fe2	+1.631	+1.645	+1.644	+1.646
Fe at Ga2		+1.659	+1.653	+1.657
01	-1.21	-1.2	-1.179	-1.161
O2	-1.183	-1.183	-1.175	-1.168
O3	-1.091	-1.085	-1.069	-1.057
O4	-1.198	-1.206	-1.192	-1.186
O 5	-1.028	-1.04	-1.038	-1.037
O6	-1.172	-1.179	-1.178	-1.179

Charge density plots for GaFeO₃

> Non trivial degree of covalency \rightarrow bonding is not totally ionic

Excess Fe @ Ga2 has charge smaller than parent Ga (related to the smaller band gap calculated)

Magnetic properties

Calculated spin moment per ionic site

	$\mu_{S}[\mu_{B}]$	x = 1	x = 1.1	x = 1.2	<i>x</i> = 1.4
	Fe at Ga2		4.08	4.08	4.08
LDA + U	Fe at Fe1	-4.02	-3.98	-3.97	-3.94
	Fe at Fe2	4.01	4.01	4.02	4.02
	Fe at Ga2	(4.7)	4.15	4.15	4.15
GGA + U	Fe at Fe1	-4.11 (-3.9)	-4.10	-4.08	-4.07
	Fe at Fe2	4.10 (4.5)	4.11	4.11	4.11

Calculated orbital moment per ionic site -0.01 0.03 \square DA+U(U=4 eV)GGA+U(U=4 eV)(2a2) (2a2) -0.015 B $\mu_L~(\mu_B/~{\rm Fe1})$ Fe2 or /Fe 0.02 -0.02 0.015 ^Пт -0.025 0.01 -0.03 1.2 1.2 1.4 1.4 Fe content (x)

Excess Fe ion (occupying Ga2 site):

- is FM coupled to Fe2

 holds larger spin & orbital moment than parent Fe sites

Larger U-value results in smaller orbital moments

• Magnetic anisotropy energy (MAE) = $E_{total}(\vec{M} \parallel b - axis) - E_{total}(\vec{M} \parallel c - axis)$

Optical properties

 Evolution of the dielectric function as a function of the Fe content

 PDOS and charge density plots for the valence and conduction bands

Two main optical features whose energy positions are independent of x

 Oscillatory strength increases with the Fe content due to enhanced Fe unoccupied states Fe-d states in conduction band and O-p states in the valence band show energy and spatial overlap o optical features ocrrespond to CT transitions from O-p to Fe-d states.

A. Thomasson et al., RSC advances 3, 3124 (2013)

Conclusion & perspective

Conclusions

Setting on-site Coulomb interaction U=8 eV better describes the experimental results on GFO properties

- Bonding in GFO is not completely ionic
- Properties are influenced by increasing Fe concentration :
 - increase of the unit cell volume
 - decrease of the energy band gap
 - decrease of the MAE (discussed in relation to structure)
 - altering optical spectra's features

Perspective

 Exploring the relation between polarization & magnetism in GFO (magnetoelectric effect)

>

Thanks for your attention !

- Evolution of the dielectric function as a function of the Fe/Ga disrorder percentage

