

SMTB-Q: un modèle à charge variable en liaisons fortes pour les oxydes

Robert TÉTOT

Laboratoire d'Étude des Matériaux Hors Équilibre

Institut de Chimie Moléculaire et des matériaux d'Orsay

Pourquoi un (nouveau) modèle pour les oxydes?

- Les modèles classiques purement ioniques (Born-Madelung) à charges ponctuelles (formelles ou partielles) sont inadaptés :
- La cohésion est purement coulombienne et compensée par une répulsion à courte portée. Ces modèles sont incapables de rendre compte en même temps du paramètre cristallin et de l'énergie de cohésion.
- \rightarrow Ne traitent pas la covalence : conviennent pour les halogénures alcalins (NaCl, CaF₂...).
- Ne permettent pas de traiter les transferts de charges.

- Les modèles à charges variables existants traitent la partie ionique et la partie covalente de l'énergie de façon séparée :
- la partie ionique par le formalisme QEq
- la partie covalente par un potentiel de Morse, EAM, SM...

Second-Moment-Tight-Binding Variable-Charge Model (SMTB-Q)

- Formalisme de charge variable QEq (Rappé et Goddard 1991)
- ≻Modèle du Réseau Alterné. La liaison M-O est décrite en liaisons fortes au 2nd moment. (C. Noguera, J. Goniakowski 1994)

- Décrit de façon approchée mais correcte le caractère iono-covalent de la liaison métal-oxygène dans les oxydes
- Modèle analytique : il peut être (facilement) intégré dans des simulations Monte Carlo ou de dynamique moléculaire
- La charge sur un ion étant fonction de son environnement, on a une description réaliste des situations hétérogènes

Formalisme à charges variables (QEq)

Minimisation de l'énergie par rapport aux charges ioniques :

(électronégativité)

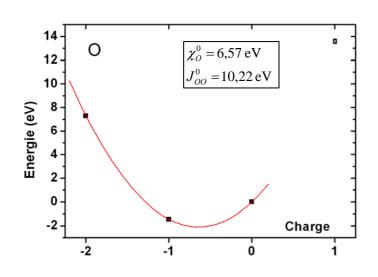
$$E(Q_{N}) = \sum_{A=1}^{N} \left(E_{A^{0}} + \chi_{A}^{0} Q_{A} + \frac{1}{2} J_{AA}^{0} Q_{A}^{2} \right) + \frac{1}{2} \sum_{A \neq B}^{N} Q_{A} Q_{B} J_{AB} + E_{Cov}(Q_{N})$$
ionisation
coulomb

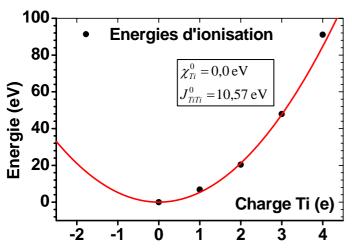
$$\chi_{A}(Q_{1}...Q_{N}) = \frac{\partial E(Q_{N})}{\partial Q_{A}} = \chi$$

$$\dot{\Sigma}_{i=1}^{N} Q_{i} = 0$$

Neutrainte electrique

Energie d'ionisation et interaction de Coulomb (ex : TiO₂)

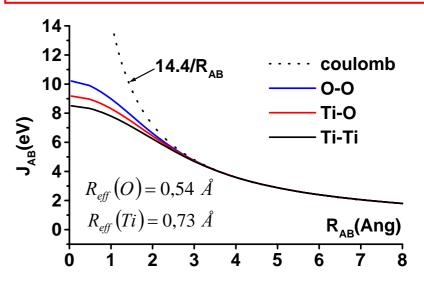




Les ions sont décrits par des orbitales ns de Slater :

$$\begin{cases}
\Phi_{n\zeta}^{Slater} = N_n R^{n-1} \exp(-\zeta R) \\
\zeta = (2n+1)/(4R_{eff}(A))
\end{cases}$$

$$J_{AB}(R) = \int dR_A dR_B \left| \Phi_{n_A \zeta_A}(R_A) \right|^2 \frac{1}{R_{AB}} \left| \Phi_{n_B \zeta_B}(R_B) \right|^2$$



QEq: Calcul de la charge (MO)

Tous les anions (cations) ont la même charge et la même coordinance. :

$$E(Q_{1}...Q_{N}) = \sum_{A=1}^{N} \left(E_{A^{0}} + \chi_{A}^{0} Q_{A} + \frac{1}{2} J_{AA}^{0} Q_{A}^{2} \right) + \frac{1}{2} \sum_{A \neq B}^{N} Q_{A} Q_{B} J_{AB}$$
 [On oublie *Ecov* pour le moment]

La dérivée de E par rapport aux charges conduit à l'égalité des 2 potentiels chimiques χ_M et χ_O :

$$\chi_{M} = \chi_{M}^{0} + \sum_{M} J_{MM} Q_{C} + \sum_{O} J_{MO} Q_{O} = \chi_{O} = \chi_{O}^{0} + \sum_{M} J_{OM} Q_{M} + \sum_{O} J_{OO} Q_{O}$$

Avec la condition de neutralité électrique : $Q_M = -Q_O = Q$ et en regroupant les termes d'intéraction:

$$J^{C} = (J_{MO}^{C} - J_{OO}^{C}) - (J_{MM}^{C} - J_{OM}^{C}) \qquad \qquad J_{AX}^{C} = \sum_{Y} J_{AX}$$

Modèle du réseau alterné pour un oxyde isolant *MnOm* Calcul de *Ecov*

Hypothèses:

- Modèle de bandes valide
- Les orbitales atomiques de l'anion (oxygène) d'une part et du cation d'autre **part** ont la même énergie (E_{A} et E_{C} respectivement)
- Le transfert électronique n'est permis qu'entre anions et cations voisins ⇒ nature alternée du réseau
- Approximation au second moment des liaisons fortes

$$\left|\Psi_{k}\right\rangle = \left|\Psi_{kA}\right\rangle + \left|\Psi_{kC}\right\rangle$$

$$\begin{aligned} ||\Psi_{kA}\rangle &= \sum_{m} \alpha_{m} |A_{m}\rangle \\ |\Psi_{kC}\rangle &= \sum_{n} \gamma_{n} |C_{n}\rangle \end{aligned}$$

$$H = H_D + H_{ND}$$

$$D: E_A$$
, E_C

$$H = H_D + H_{ND}$$
 $D: E_A, E_C$ $ND:$ intégrale de saut β

$$\begin{aligned} & \left(H_{D} + H_{ND} \right) \left(\left| \Psi_{kA} \right\rangle + \left| \Psi_{kC} \right\rangle \right) = E_{k} \left(\left| \Psi_{kA} \right\rangle + \left| \Psi_{kC} \right\rangle \right) \\ & \left(H_{D} \left| \Psi_{kA} \right\rangle + H_{ND} \left| \Psi_{kC} \right\rangle \right) + \left(H_{D} \left| \Psi_{kC} \right\rangle + H_{ND} \left| \Psi_{kA} \right\rangle \right) = E_{k} \left(\left| \Psi_{kA} \right\rangle + \left| \Psi_{kC} \right\rangle \right) \\ & \in SR \ anion & \in SR \ cation \end{aligned}$$

Fonctions propres et valeurs propres

$$\begin{vmatrix} H_{ND} | \Psi_{kA} \rangle = (E_k - E_C) | \Psi_{kC} \rangle \\ H_{ND} | \Psi_{kC} \rangle = (E_k - E_A) | \Psi_{kA} \rangle$$

Les valeurs propres :
$$F_k = (E_k - E_A)(E_k - E_C)$$
 Relation quadratique

Entre F_k et E_k

$$E_k^{\pm} = \frac{(E_C + E_A)}{2} \pm \frac{1}{2} \sqrt{(E_A - E_C)^2 + 4F_K}$$

Densités d'états et moments

$$N(E) = \sum_{k} \delta(E - E_{k}) \quad ; \quad N_{A(C)}(E) = \sum_{k} \left| \left\langle \Psi_{A(C)} \left\| \Psi_{k} \right\rangle \right|^{2} \delta(E - E_{k}) \right|$$

Moment d'ordre n : $M_{nA(C)} = \int E^n N_{A(C)}(E) dE$

$$M_{1A} = E_A$$
 $M_{1C} = E_C$ $M_{2A} = Z_A \beta_A^2$ $M_{2C} = Z_C \beta_C^2$

soit ...

 $\Delta \pm x$

 2Δ

La densité d'état M(F): on choisit la forme la plus simple, soit un pic de Dirac localisé à son $1^{\rm er}$ moment en F. Etant donnée la relation quadratique entre F et $E \Rightarrow 2^{\rm e}$ moment de N(E). On diagonalise sur un des $SR \Rightarrow 2^{\rm e}$ moment de $N_A(E) \Rightarrow F_k = Z_A \beta_A^2$

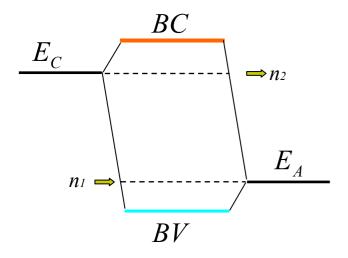
$$E_{k}^{\pm} = \frac{(E_{C} + E_{A})}{2} \pm \frac{1}{2} \sqrt{(E_{A} - E_{C})^{2} + 4Z_{A}\beta_{A}^{2}} = \pm \frac{1}{2} \sqrt{x^{2} + 4Z_{A}\beta_{A}^{2}} = \pm \frac{1}{2} \Delta$$

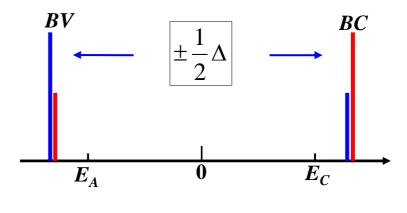
Densités d'état

$$N(E) = n_0 \delta(E + \frac{\Delta}{2}) + n_0 \delta(E - \frac{\Delta}{2}) + \boxed{n_1 \delta(E - E_A)} + \boxed{n_2 \delta(E - E_C)}$$

$$N_A(E) = n_0 \left(\frac{\Delta + x}{2\Delta}\right) \delta(E + \frac{\Delta}{2}) + n_0 \left(\frac{\Delta - x}{2\Delta}\right) \delta(E - \frac{\Delta}{2}) + \boxed{n_1 \delta(E - E_A)}$$

$$N_C(E) = n_0 \left(\frac{\Delta - x}{2\Delta}\right) \delta(E + \frac{\Delta}{2}) + n_0 \left(\frac{\Delta + x}{2\Delta}\right) \delta(E - \frac{\Delta}{2}) + \boxed{n_2 \delta(E - E_C)}$$





Le nombre d'états

```
MnOm: dc et do sont les dégénérescences des
orbitales externes anioniques et cationiques :
do=3 pour 2p de l'oxygène
dc=1 pour s de Mg, Sr..., dc=6 pour 3d+4s de Ti, .....
Le nombre d'états couplés entre anions et cations
dépend de la connectivité du réseau (mZo=nZc):
n_0 = min (mdo, ndc); n_1(n_2) = max(mdo, ndc) - n_0
(1 dans MgO, 6 dans TiO_2)
Si mdo>ndc \rightarrow n1 états non liants à E_A (2 dans MgO, 0 dans TiO<sub>2</sub>)
Si ndc>mdo \rightarrow n2 états à E_c
```

Charges ioniques et énergie covalente

 \triangleright L'intégration de $N_A(E)$ sur la BV donne le nombre d'électrons portés par les anions (même chose pour les cations) et les charges ioniques :

$$\partial Q_A = 2 - |Q_A| = 2 - Q = \frac{n_0}{m} \left(\frac{\Delta - x}{\Delta} \right)$$

$$\delta Q_C = Q^F - Q_C = \frac{n_0}{n} \left(\frac{\Delta - x}{\Delta} \right)$$

 \succ L'énergie covalente est obtenue par l'intégration de EN(E) sur la BV moins l'énergie initiale (dans le cas isolant) :

$$E_{cov} = -n_0 \frac{4Z_A \beta_A^2}{\Delta} = -n_0 \frac{4Z_C \beta_C^2}{\Delta}$$

$$E_{Cov} = -2m|\beta_A|\sqrt{Z_A}\sqrt{\delta Q_A \left(2\frac{n_0}{m} - \delta Q_A\right)}$$

$$E_{Cov} = -m|\beta_A|\sqrt{Z_A}\sqrt{\delta Q_A\left(2\frac{n_0}{m} - \delta Q_A\right)} - n|\beta_C|\sqrt{Z_C}\sqrt{\delta Q_C\left(2\frac{n_0}{m} - \delta Q_C\right)}$$

SMTB-Q - résumé

$$E_{coh} = E_{ion} + E_{coul} + E_{cov} + E_{rep}$$

$$E_{ion} = \sum_{A} \left(E_A^0 + \chi_A^0 Q_A + \frac{1}{2} J_{AA}^0 Q_A^2 \right)$$

$$E_{coul} = \sum_{A} \sum_{B < A} Q_A Q_B J_{AB}$$

$$E_{\text{cov}} = -\sum_{i(i=M(O))} \left\{ \sum_{\substack{j(j=O(M)\\ r_{ij} \le r_C}} \beta_{M(O)}^2 \exp \left[-2q \left(\frac{r_{ij}}{r_{OM}^0} - 1 \right) \right] \Delta Q_{M(O)} \right\}^{1/2}$$

$$E_{rep}^{M-O} = \sum_{i(i=M,O)} \sum_{\substack{j(j=O,M) \\ r_{OM} \le r_C}} A \exp \left[-p \left(\frac{r_{ij}}{r_{OM}^0} - 1 \right) \right]$$

$$E_{rep}^{O-O} = \frac{1}{2} \sum_{O} \sum_{O, r_{OO} \le r_C} B \exp\left(\frac{r_{OO}}{\rho}\right)$$

Paramètres ajustables :

$$\chi^0_{\scriptscriptstyle A}, {J}^0_{\scriptscriptstyle AA}$$

$$R_{eff}(M,O)$$

$$\beta_0, q$$

$$B, \rho$$

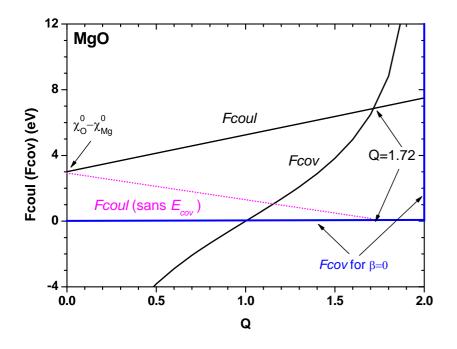
Propriétés : paramètres cristallins, énergie de cohésion, bulk modulus, constantes élastiques

SMTB-Q: MgO

$$E(Q_1...Q_N) = \sum_{A=1}^{N} \left(E_{A^0} + \chi_A^0 Q_A + \frac{1}{2} J_{AA}^0 Q_A^2 \right) + \frac{1}{2} \sum_{A \neq B}^{N} Q_A Q_B J_{AB} + E_{Cov}(Q_i)$$

$$\overline{J^{C}Q + \left(\chi_{O}^{0} - \chi_{Mg}^{0}\right) = 0} \quad (QEq) \quad \Longrightarrow \quad$$

$$\begin{bmatrix}
J^{C}Q + \left(\chi_{O}^{0} - \chi_{Mg}^{0}\right) = 0
\end{bmatrix} (QEq) \longrightarrow \begin{bmatrix}
J^{C}Q + \left(\chi_{O}^{0} - \chi_{Mg}^{0}\right) = \beta\sqrt{Z_{O}} \frac{2(Q-1)}{\sqrt{Q(2-Q)}}
\end{bmatrix} (QEq+RA)$$



- La charge est bornée à 2, même dans la limite ionique $(\beta \rightarrow 0)$
- On rend compte parfaitement des propriétés de MgO (sauf C44)

$$a : 4,21 \text{ Å} (4,21)$$

$$E_{coh}$$
: -10,33 eV (-10,33)

$$C_{12}$$
: 92,8 GPa (92)

$$C_{44}$$
: 67,4 GPa (156)

$$E_{coul}$$
= -8,5
 E_{Cov} = -4.6
 E_{Rep} = 2,8

$$\Delta = 9.8eV(7.8)$$

Résultats

- MgO, SrO,.. (NaCl)
- TiO₂ (rutile, anatase, brookite)
- ZrO₂ (monoclinique, quadratique, cubique (fluorine))
- UO₂, PuO₂, CeO₂, ThO₂(fluorine)
- α -Al₂O₃ (corindon) + Al₂O₃ de transition (θ , γ , κ)
- Gd₂O₃, Y₂O₃, Eu₂O₃ (bixbyite)
- SrTiO₃ (pérovskite)
- Gd₂Ti₂O₇, Gd₂Zr₂O₇, Gd₂Zr₂O₇ (pyrochlore)

Surfaces... (atomes non équivalents)

 $Mn_1Mn_2...Mn_i Om_1Om_2....Om_i$

$$E_{cov} = -n_0 \frac{4Z_A \beta_A^2}{\Delta}$$

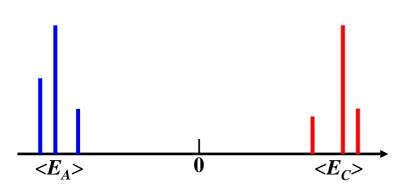
$$E_{cov} = -n_0 \frac{4Z_A \beta_A^2}{\Lambda} \iff E_{cov} = (2n_0 - m \delta Q_A)(E^- - E_A) + n \delta Q_C(E^- - E_C)$$

$$\sum_{i} m_{i} \delta Q_{A_{i}} = \sum_{i} n_{j} \delta Q_{C_{ji}}$$

$$\sum_{i} m_{i} \delta Q_{A_{i}} = \sum_{i} n_{j} \delta Q_{C_{ji}}$$

$$E_{Cov} = \sum_{A_{i}} m_{i} \left(2 \frac{n_{0}^{i}}{m} - \delta Q_{A_{i}} \right) \left(E_{Ai}^{-} - E_{A_{i}} \right) + \sum_{C_{j}} n_{j} \delta Q_{C_{j}} \left(E_{Cj}^{-} - E_{C_{j}} \right)$$

$$E_{A_{i}}^{-} = \frac{\left(\left\langle E_{C_{i}}\right\rangle + E_{A_{i}}\right)}{2} - \frac{1}{2}\sqrt{\left(E_{A_{i}} - \left\langle E_{C}\right\rangle\right)^{2} + 4Z_{A_{i}}\beta_{A_{i}}^{2}}$$



$$E_{A_{i}} = E_{A}^{0} - J_{AA}^{0} Q_{A} - V_{A}^{M}$$

$$E_{C_{j}} = E_{C}^{0} - J_{CC}^{0} Q_{C} - V_{C}^{M}$$

$$Z_{i(M,O)} = \sum_{j(O,M)(r < r_c)} \exp \left[-2q \left(\frac{r_{ij}}{r_{OM}^0} - 1 \right) \right]$$

MgO (001)

Energie de surface : 1.03 (J.m⁻²)

```
VM
                            Ei
                     7
                                   E-
                                          Ecov
                                         -0.382
    -1.713
            16.229 6.325
                          -3.598
                                 -4.941
O4
     -1.691
            15.354 4.828
                          -2.954
                                         -0.321
\mathbf{03}
                                  -4.110
                                         -0.390
O2
    -1.739
            16.787 6.617
                          -3.898
                                 -5.238
           16.150 6.414
01
     -1.720
                          -3.452
                                 -4.825
                                         -1.182
Mg1 1.720 -18.347 6.391
                          3.452
                                 -4.805
                                         -1.156
Mg2 1.712 -17.758 5.425 2.923 -4.662
                                         -0.366
Mg3 1.702 -17.727 6.246
                          2.968 -4.841
                                        -0.388
Mg4 1.729 -18.101 6.232
                          3.135 -4.818
                                        -0.359
```

déplacements (x y z) Mg2 -0.01 0.01 -0.08 O3 0.00 0.00 0.10 0.00 0.00 0.00 Mg \mathbf{O} -0.01 0.01 0.01 Mg 0.000.01 - 0.010.000.01 0.00 \mathbf{O} Mg 0.000.01 - 0.010.00 $0.00 \quad 0.02$ \mathbf{O}

EcovOx: -2.274316 EcovMg: -2.268903 Ecovtot: -4.537081 E coul totale: -29.33018
E ionique: 20.97504
E O-O: 0.7318828
E M-O: 1.920289
Ecov: -4.535696
E totale: -10.23867

Résultats surface

Energie de surface, relaxations atomiques, transfert de charges : (Simulations Monte Carlo)

```
(100) MgO, SrO
(110), (100), (001) rutile TiO<sub>2</sub>
(111), (110), (100) UO<sub>2</sub>
(0001), (1-102) Al<sub>2</sub>O<sub>3</sub>
(001) SrTiO<sub>3</sub>
```

Résultats surfaces TiO₂ (rutile)

Energies: (110), (100), (001)

E_S (J. m^{-2})	SMTB-Q	ab initio (GGA)	ab initio (B3LYP)	ab initio (1)
$E_{(110)}$	0.42	0.48	0.494	0.54
$E_{(100)}$	0.49	0.68		
$E_{(001)}$	1.26	1.36		

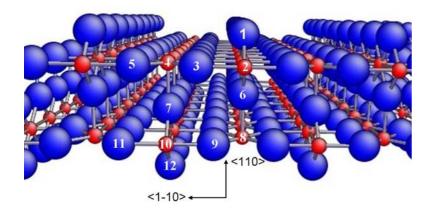
(1)	Thompson et al. (2006)	: VASP	GGA	\mathbf{PW}	
-----	------------------------	--------	-----	---------------	--

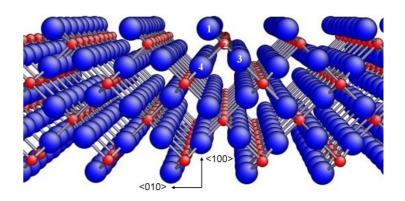
C'est la 1^{ere} fois que les énergies de surfaces de TiO₂ calculées avec des potentiels interatomiques sont en bon accord avec des calculs *ab initio*.

Relaxations atomiques: TiO₂ (110), (100)

(110)	Exp (2005)	ab initio	SMTB-Q
O(1)	0.10±0.05	0.13	0.03
Ti(2)	0.25±0.03	0.35	0.11
O(3,5)	0.27±0.08	0.26	0.17
Ti(4)	-0.19±0.03	-0.11	-0.16
O (6)	0.06±0.10	0.13	0.08
O (7)	0.00±0.08	0.05	-0.06
Ti(8)	0.14±0.05	0.27	0.04
O(9,11)	0.06±0.12	0.08	0.03
Ti(10)	-0.09±0.07	-0.08	-0.05
O(12)	0.00±0.17	0.05	-0.04

(100)	ab initio		SMTB-Q	
	<010>	<100>	<010>	<100>
O (1) Ti (2) O (3) O (4)	-0.33 0.10 -0.12 -0.05	0.05 -0.15 0.05 0.09	-0.41 0.04 -0.07 0.04	0.10 -0.12 0.05 0.00

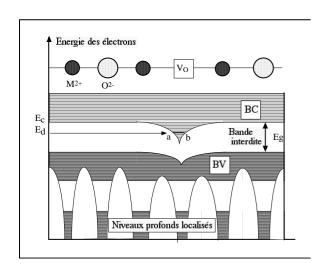


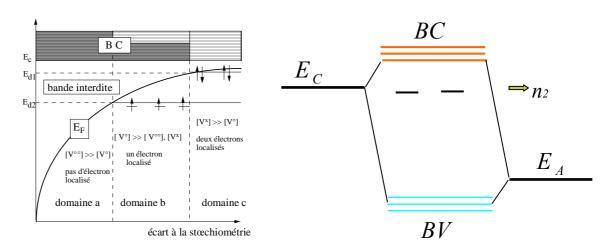


New prospects: défauts chargés, non-stoechiométrie Exemple : lacune d'oxygène dans TiO_{2-x}

Questions à résoudre :

- États dans le gap
- Oxyde non isolant (augmentation du nbre de lacunes)





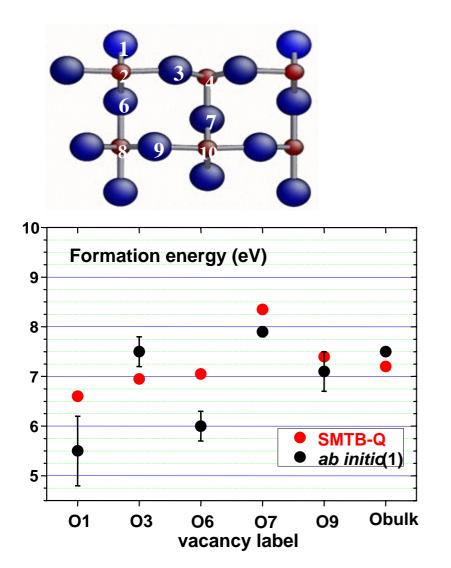
Les états dans le gap viennent de la rupture d'une liaison pour les Ti voisins de la lacune:

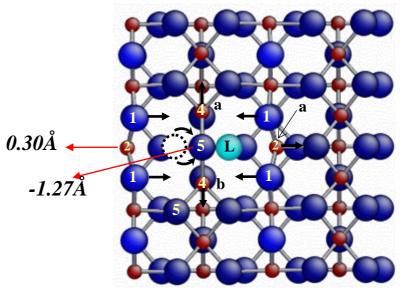
n0 = min(3x2, 6x1)=6; n1(n2)=max(mdo,ndc)-n0 = 0 pour le bulk

n0 = min (5/6x3x2, 6x1)=5; n2=6-5=1 pour les Ti voisins de la lacune (2 états de spin)

Lacunes d'oxygène à la surface TiO₂ (110)

(Les 2 e de l'oxygène sont répartis sur les Ti voisins)





- ❖ Relaxations atomiques très fortes au voisinage d'une lacune de surface: exemple O₃
- (1) Oviedo *et al.* (2004): VASP (GGA)

Résultats défauts

Energie de formation, relaxations atomiques, transfert de charges : (Simulations Monte Carlo)

- Paires de Frenkel et défauts de Schottky dans UO2
- Défauts d'antisite (désordre cationique) dans les pyrochlores

Merci de votre attention

Remerciements

```
Nicolas Salles (Thèse en cours - Al_2O_3)

Sylvain Landron (Post-Doc)

Abdelmalek Hallil (Ancien doctorant avec qui tout à commencé sur TiO_2)

Gaël Sattonnay (UO_2, pyrochlores)

Emilie Amzallag (calculs ab initio)

Equipe simulation du LEMHE : Fabienne Berthier, Isabelle Braems,

Jérôme Creuze
```

Claudine Noguera
Jacek Goniakowski
Jean-Paul Crocombette