DE LA RECHERCHE À L'INDUSTRIE

www.cea.fr

MODÉLISATION DES DÉGÂTS D'IRRADIATION DANS L'UO₂ PAR CALCUL DE STRUCTURE ÉLECTRONIQUE : **FORTES CORRÉLATIONS ET INTERACTIONS DE VAN DER WAALS**

GDR ModMat, Marseille

Emerson Vathonne1, Michel Freyss¹, Marjorie Bertolus¹, Bernard Amadon² ¹ CEA/DEN/DEC/SESC/LLCC, Centre de Cadarache

² CEA/DAM, Bruyères-le-Châtel

Directeur de thèse : Guy Tréglia (CINaM, Luminy)

GDR MODMAT 21 – 22 FEVRIER 2013

LABORATOIRE - CONTEXTE

Effets d'irradiation dans le combustible nucléaire

Le Laboratoire des Lois de Comportement des Combustibles : LLCC

Objectifs de l'étude du combustible UO₂ par calcul de structure électronique

LES FORTES CORRELATIONS ELECTRONIQUES

La théorie de la fonctionnelle de la densité et ses limitations

La DFT+U et la DFT+DMFT

Résultats sur le cristal d'UO₂

DESCRIPTION DES LIAISONS FORMEES PAR LES GAZ RARES

Les interactions de van der Waals en DFT

Résultats sur les énergies d'incorporation de gaz rares

CONCLUSIONS ET PERSPECTIVES

LABORATOIRE DES LOIS DE COMPORTEMENT DES COMBUSTIBLES – CONTEXTE

EFFET DE L'IRRADIATION DANS LES COMBUSTIBLES

Désintégration alpha

Produits de fission, en particulier éléments volatiles

Hélium + noyaux de recul

Transformation du combustible en réacteur

Irradiation ou simulations expérimentales (études à effets séparés)

Comportement sous irradiation des combustibles actuels et futurs

Modélisation multi-échelle

Calcul de structure électronique, dynamique moléculaire classique, dynamique d'amas

Caractérisations aux échelles appropriées Cartographie en µ-NRA

SIMS, RBS, NRA, TEM, XAS...

GDR ModMat | 21-22 février 2013 | PAGE 5

ESRF synchrotron

(échelle 1µm / 1s)

Relâchement du krypton dans UO₂

Dynamique d'amas [1] / TDS (Spectroscopie de Désorption Thermique) [2]

t (s)

Energie de formation d'amas de défauts
Relâchement de bulles de produits de fission

[1] R. Skorek *et al.*, J. Defect Diff. Forum, 323-325, 209 (2012)[2] Thèse A. Michel, CEA-DEC / Université de Caen (2011)

GDR ModMat | 21-22 février 2013 | PAGE 10

(échelle 100 nm / 100 ns)

Dynamique moléculaire classique [1]

MET (Microscope Electronique en Transmission) [2]

- Endommagement du combustible
- Mécanismes de nucléation de bulles

[1] G. Martin et al. Physics Letters A 374, 3038 (2010)[2] Sabathier et al., NIMB B 266, 3027 (2008)

(échelle 1 nm / 10 ps)

Calculs des énergies de formation des anti-Schottky pour la dynamique d'amas (motif d'UO₂ en interstitiel) Comparaison calculs de structure électronique / expériences de diffusion : migration de l'oxygène dans l'UO₂ [1]

- Energies de formation de défauts ponctuels
- Migration de produits de fission
- Constantes élastiques

[1] B. Dorado et al. Phys. Rev. B 83, 035126 (2011)

ETUDE DU DIOXYDE D'URANIUM PAR CALCUL DE STRUCTURE ELECTRONIQUE

$$\widehat{H}\Psi(\vec{r}) = E\Psi(\vec{r})$$

Aspect méthodologie :

- Utiliser une méthode de calcul plus précise que celle utilisée actuellement (DFT+U) pour décrire la structure électronique des matériaux fortement corrélés que sont les oxydes d'actinides : utilisation de la DFT+DMFT (Density Functionnal Theory + Dynamical Mean Field Theory)
- 2 Validation des approximations utilisées pour l'étude de l'incorporation de gaz rares (He, Kr, Xe) dans UO₂ : interactions de van der Waals négligeables ?

Aspect application :

- Etudier les chemins de migration du krypton dans le dioxyde d'uranium
- Etudier l'incorporation de produits de fission dans le dioxyde d'uranium

1 – LES FORTES CORRELATIONS ELECTRONIQUES

 $\widehat{H}\Psi(\vec{r}) = E\Psi(\vec{r})$

MODÉLISATION DES COMPOSÉS D'ACTINIDES PAR LA THÉORIE DE LA FONCTIONNELLE DE LA DENSITÉ

Difficulté de la modélisation des composés d'actinides

- Électrons 5f localisés : fortes corrélations électroniques dues aux bandes 5f étroites
- Plusieurs états d'oxydations possibles pour les cations actinides
- Structures et propriétés magnétiques complexes (distorsion Jahn-Teller et ordre magnétique non-colinéaire dans UO₂)

UO₂ est un isolant de Mott paramagnétique à haute température

- Caractère isolant dû à la forte corrélation des électrons 5f
- Gap entre les bandes uranium 5f

Echecs de la DFT avec les approximations standards (LDA, GGA)

- **Sous estime les fortes corrélations électroniques**
- Les isolants de Mott sont trouvés métalliques, en particulier UO₂

Des approximations au-delà de la DFT standard doivent être utilisées

Fortes corrélations : fonctionnelles hybrides, DFT+U, self interaction correction, DFT+DMFT. Jusqu'à aujourd'hui, seulement la DFT+U est utilisée pour l'étude des défauts ponctuels dans l'UO₂

FORTES CORRELATIONS DES ELECTRONS 5*f* DANS LES COMPOSES D'ACTINIDES : LA DFT+U ^{1,2}

Un terme d'interaction coulombienne U est ajoutée entre les électrons 5f pour les localiser

Limites de la DFT+U

- Ordre paramagnétique difficile à modéliser : nécessite un trop grand nombre d'atomes
- L'ordre et l'anisotropie des orbitales sont surestimés
- Solution de champ moyen statique : occupations électroniques fixes
- Convergence des calculs vers un grand nombre d'états métastables : moyens pour les éviter => par exemple : procédure développée au CEA du contrôle des matrices d'occupation

→Passage à la DFT+DMFT (approximation Hubbard I)

FORTES CORRELATIONS DES ELECTRONS 5f DANS LES COMPOSES D'ACTINIDES : COMPARAISON DFT+U / DFT+DMFT

La **DFT+U** permet de décrire les interactions dans les solides avec la théorie de champ moyen statique

<u>Idée principale :</u> un électron est décrit dans un champ effectif de tous les autres électrons ⇒ Problème Hartree-Fock auto-cohérent

La DFT+DMFT [1] permet de décrire les corrélations dans les solides au-delà de la théorie de champ moyen statique

Idée principale : Pour chaque **atome** pris séparément, les corrélations locales sont décrites précisément, dans le **champ effectif** des **autres atomes**

- ⇒ Problème d'impuretés auto-cohérent : modèle d'impureté d'Anderson
 - **—** Fortes corrélations mieux décrites
 - Ordre paramagnétique modélisable avec un faible nombre d'atomes
 - Le système ne converge pas vers des états métastables

[1] Georges et al., Rev. Mod. Phys. 68, 13 (1996)

RÉSULTATS DFT+U / DFT+DMFT POUR LES PROPRIÉTÉS DU CRISTAL D'UO₂

	GGA+U (OMC)	GGA+DMFT	Exp.
Paramètre de maille (Å)	5.57 (a=b) 5.49 (c)	5.48	5.47
Module de compressibilité	194	206	207
C ₁₁ (GPa)	206	373	389
C ₁₂ (GPa)	188	123	119
C ₄₄ (GPa)	15	77	60

9000 UO2_DFT+U_Occupation_Matrix UO2 DFT+DMFT 8000 XPS hv=1486 eV BIS E=915 eV U 5f Density of states (arb. units) 7000 Densité d'états (états/eV) Données expérimentales 6000 **O** 2p Y. Baer and J. Schoenes. 5000 Solid State Com. 33, 885 (1980) 4000 -10 -8 -6 -4 -2 0 2 4 6 8 10 12 14 16 Energy (eV) 3000 2000 1000 0 Energie (eV) 15 5 10 -5 0 -10

La DFT+DMFT préserve le réseau cubique de l'UO₂

La DFT+DMFT améliore la description des propriétés électroniques et mécaniques de l'UO₂

Description améliorée grâce à la meilleure description de la forte corrélation et du magnétisme (paramagnétisme)

RÉSULTATS DE DFT+DMFT SUR LES DÉFAUTS PONCTUELS DE L'UO₂

Temps de calculs très longs en DFT+DMFT

Supercellules de 12 atomes et 24 atomes

Lacune oxygène

Lacune uranium

$$E_{V_X}^{for} = E_{V_X}^{N-1} - \frac{1}{2}E_{O_2} - E_{UO_2}^{N}$$

$$E_{V_X}^{for} = E_{V_X}^{N-1} - \frac{1}{4}E_{U_{métal}} - E_{UO_2}^{N}$$

Energie de formation (eV)	Lacune oxygène	
DFT+U (AFM)	6,27	
DFT+DMFT (Paramagnétique - structure DFT+U AFM)	6,70	

Différence d'environ **0,4 eV** entre les deux méthodes

La DFT+U donne des résultats cohérents par rapport à ceux de DFT+DFMT : Calculs en cours sur les lacunes d'uranium et des défauts de Schottky

2 – DESCRIPTION DES LIAISONS FORMEES PAR LES GAZ RARES

DESCRIPTION DES INTERACTIONS DE VAN DER WAALS (VDW)

- La DFT avec ses approximations locales ou semi-locales (LDA / GGA) ne décrit pas les interactions longue portée de van der Waals (vdW) – dispersion dues à la corrélation électronique dynamique / non-locale
- Echec de la LDA et de la GGA dans la description des liaisons formées par les gaz rares : dimères, clusters, ... [1]
- Etude de systèmes moléculaires modèles ⇒ Evaluation a priori de la précision sur la liaison GR - atome à couche incomplète en fonction du partage de densité électronique [2]

From Langreth et al. J. Phys.: Condens. Matter 21, 084203 (2009)

[1] T. van Mourik, R. J. Gdanitz, J. Chem. Phys.116, 9620 (2002)[2] Bertolus *et al.* Phys. Chem Chem. Phys. 14, 553 (2012)

INCORPORATION DE GAZ RARES DANS UO₂ CARTES DE DENSITÉ ÉLECTRONIQUE

Différentes situations entres les différentes positions d'incorporation et entre les gaz rares

Des tests sur de nouvelles approximations prenant en compte les interactions de vdW doivent être réalisés

Fonctionnelles développées pour décrire les interactions de van der Waals : ajout d'un terme empirique ou fonctionnelles de corrélation non locales

DESCRIPTION DES INTERACTIONS DE VAN DER WAALS (VDW) DANS LES CODES DE CALCULS DE SOLIDES

Test de vdW-DF: van der Waals density functional

Fonctionnelle de la densité électronique prenant en compte les effets de la corrélation électronique non locale

$$E_{c}[n] = E_{c}^{DFT}[n] + E_{c}^{nl}[n]$$

L'interaction de vdW entre pleinement dans la correction non locale $E_c^{nl}[n]$ qui concerne seulement la fonctionnelle de corrélation

$$E_c^{nl} = \iint d\mathbf{r} \, d\mathbf{r}' \, n(\mathbf{r}) \, \Phi^c(\mathbf{r}, \mathbf{r}') \, n(\mathbf{r}')$$

Différentes formulations développées

 vdW-DF 04 : Dion *et al.* Phys. Rev. Lett. 92, 246401 (2004) Roman-Pérez *et al.* Phys. Rev. Lett. 103, 096102 (2009) GGA= revPBE VASP

vdW-DF 10 : J. Klimeš *et al.*, J. Phys. Cond. Mat. 22, 022201 (2010) GGA= optPBE VASP

DE LA RECHERCHE À L'INDUSTRIE

ENERGIES D'INCORPORATION DE GAZ RARES DANS UO₂

Energie d'incorporation (eV)	DFT (GGA-PBE)
He interstitiel	0,56
He lacune oxygène	1,17
He lacune uranium	0,39
He en Schottky 2	0,12
Kr interstitiel	6,47
Kr site uranium	2,72
Kr en Schottky 2	1,20
Xe interstitiel	9,31
Xe site uranium	4,33
Xe en Schottky 2	1,77

Contribution de - 0,91 eV à -0,06 eV des fonctionnelles vdW pour Kr et Xe :

variables et importantes pour les défauts les plus gros

Mais faible contribution des fonctionnelles vdW pour l'He : de -0,31 eV à 0,04 eV

⇒ Non cohérent avec les cartes de densité et les résultats sur les systèmes modèles

Calculs en cours pour comprendre le comportement de ces fonctionnelles

- sur les défauts seuls
- sur des petites molécules et des agrégats et comparaison avec résultats ab initio
- sur d'autres systèmes solides

CONCLUSIONS ET PERSPECTIVES

CONCLUSIONS

- La DFT+U est une bonne approximation pour les composés présentant des fortes corrélations électroniques mais il existe certaines limites (propriétés magnétiques, difficulté à atteindre l'état fondamental...) => La DFT+DMFT permet de mieux décrire le combustible nucléaire UO₂ (calculs plus longs mais plus précis)
- D'après les premiers résultats, les fonctionnelles prenant en compte les interactions de van der Waals ont une influence non négligeable sur les énergies d'incorporation de produits de fission = > Calculs supplémentaires en cours pour comprendre l'effet de ces fonctionnelles sur les énergies d'incorporation

Perspectives :

- Calcul des énergies de formation de défauts ponctuels/migration de produits de fission en incluant le **couplage spin orbite**
- Calcul des énergies de migration du krypton dans l'UO₂
- Poursuivre les calculs sur les énergies de formation de défauts et de migration de produits de fission pour contribuer à l'approche multi-échelle => Calculs pour la dynamique d'amas, dynamique moléculaire, etc

REMERCIEMENTS

Philippe GarciaDEC/SESCElizabetta PizziDEC/SESCSerge MaillardDEC/SESCGérald JomardDEC/SESCBoris DoradoCEA/DAM

MATAV TGCC/CCRT CINES

Commissariat à l'énergie atomique et aux énergies alternatives	DEN
Centre de Cadarache 13108 Saint-Paul-Lez-Durance	DEC
T. +33 (0)4 42 25 70 00	SESC
	LLCC

Etablissement public à caractère industriel et commercial RCS Paris B 775 685 019