

HYDROGENE SUR GRAPHENE DFT & DM

L.Delfour¹, L.Magaud¹, A.Davydova², G.Cunge², E.Despiau-Pujo², D.B.Graves³

¹ CNRS, Institut Néel and UJF, 38042 Grenoble, France
 ² LTM, CNRS/UJF-Grenoble1/CEA, 17 avenue des Martyrs, 38054 Grenoble, France
 ³ University of California, Berkeley, CA 94720, USA

www.neel.cnrs.fr

Recherche fondamentale en physique de la matière condensée, riche d'une importante composante interdisciplinaire aux interfaces avec la chimie, l'ingénierie et la biologie.

NANO	MODT	MCMF
THE CONTRACT OF THE CONTRACT.	IVICDI	Proprint

460 personnes20 théoriciens

Recherche fondamentale en physique de la matière condensée, riche d'une importante composante interdisciplinaire aux interfaces avec la chimie, l'ingénierie et la biologie.

NANO - Nanosciences Etude des propriétés physiques d'objets nanométriques, leur utilisation en vue d'applications dans les domaines de l'énergie, des techniques de l'information, et de la biologie

champ proche cohérence quantique micro- nano magnétisme nanophysique et semiconducteurs nanospintronique et transport moléculaire semi-conducteurs à large bande interdite systèmes hybrides de basse dimensionnalité théorie et nanosciences

Recherche fondamentale en physique de la matière condensée, riche d'une importante composante interdisciplinaire aux interfaces avec la chimie, l'ingénierie et la biologie.

MCBT - Matière Condensée - Basses Températures

Etude fondamentale des nouveaux états de la matière condensée, développement des procédés ou des instruments originaux

cristaux électroniques hélium : du fondamental aux applications matière condensée et physique statistique supraconducteurs et matériaux fonctionnels, de l'élaboration aux applications systèmes à fortes corrélations électroniques thermodynamique et biophysique des petits systèmes ultra-basses températures

Recherche fondamentale en physique de la matière condensée, riche d'une importante composante interdisciplinaire aux interfaces avec la chimie, l'ingénierie et la biologie.

MCMF - Matière Condensée - Matériaux et Fonctions

Développe l'élaboration, les études cristallographiques ou spectroscopiques et la modélisation de matériaux fonctionnels

intermétalliques & interstitiels – conversion de l'énergie matériaux, optique non linéaire et plasmonique surfaces, interfaces et nanostructures structure et propriétés des matériaux – conditions extrêmes théorie et simulation numérique des propriétés électroniques

Recherche fondamentale en physique de la matière condensée, riche d'une importante composante interdisciplinaire aux interfaces avec la chimie, l'ingénierie et la biologie.

NANO	MCBT	MCMF

Yves Joly, Valerio Olevano, Jean-Pierre Julien Développement de méthodes et de codes

Xavier Blase, Claudio Attacalite Développement de codes et calculs

Marie Bernadette Lepetit, Laurence Magaud Calculs

METHODES

METHODES

200 C

DFT

DM classique

www.neel.cnrs.fr

DFT

TESTS DES PARAMETRES

www.neel.cnrs.fr

10

HADSORBE

H ADSORBE

www.neel.cnrs.fr

12

Etude expérimentale et théorique de dimères d'hydrogène sur graphite (0001)

la part de sp dans l'énergie de liaison des dimères ferromagnétiques <0.12 eV

seuls les dimères non-magnétiques sont observés expérimentalement

⇒étude de la stabilité de H_2 sur graphène sans sp, qui ralentit les calculs

Ž. Šljivananin et al, J. Chem. Phys. 131, 2009

13

RELAXATION

RELAXATION

RELAXATION

distance > 0.5 Å ⇒très bon accord

distance < 0.5 Å ⇒divergence :

d (Å)	E (eV)
0.5	0.005
0	0.03
0.5	0.1
0	1.87

relaxation non négligeable à courte distance

top

www.neel.cnrs.fr

bridge

hollow

www.neel.cnrs.fr

Longueur de liaison de H₂ obtenue en GGA plus proche que celle obtenue en LDA.

> 80meV de différence entre LDA et GGA.

FONCTIONNELLE

FIG. 3. Variation of potential energy with the separation between the graphene sheet and the center of mass of the hydrogen molecule in site D using the LDA VWN functional (\Box), the GGA PW91 functional (\bullet), and the GGA PBE functional (\triangle). Inset: close up of the potential-energy minima.

D.Henwood et al., Phys. Rev. B 75, 2007

FONCTIONNELLE

www.neel.cnrs.fr

25

FONCTIONNELLE

www.neel.cnrs.fr

UNIVERSITE JOSEPH FOURIER Sciences technologie sante 28/02/2013

UNIVERSITE JOSEPH FOURIER

[-0.02 ; 0.53] Å

200 atomes C

www.neel.cnrs.fr

www.neel.cnrs.fr

29

Dé	éformation de 3.82 Å autour du C _{TOP}
00000	

RAYON (A)	HAUTEUR (A)
0	1.134
1.501	0.173
2.514	0.088
2.892	0.086
3.820	0.003

www.neel.cnrs.fr

200 C et 32 C ⇒peu de différence s structurales lors de l'adsorption de H

Et pour la structure électronique ?

200 C et 32 C ⇒peu de différence s structurales lors de l'adsorption de H

pour la structure électronique
=> interaction entre les défauts

DFT vs DM

www.neel.cnrs.fr

33

HABSORPTION

* * * *

A.Ito et al., J. Phys. Soc. Jpn., Vol. 77, No. 11, 2008

E.Despiau-Pujo et al., soumis à J. Appl. Phys.

www.neel.cnrs.fr

41

www.neel.cnrs.fr

42

www.neel.cnrs.fr

0.8 eV

www.neel.cnrs.fr

44

www.neel.cnrs.fr

EFFET DE BORDS

M.Teraoka et al., Jpn. J. Appl. Phys. 51, 2012 E.Despiau-Pujo et al., soumis à J. Appl. Phys.

REMERCIEMENTS

l'équipe du LTM Emilie Despiau-Pujo, Alexandra Davydova, Gilles Cunge

College of Chemistry

UNIVERSITY OF CALIFORNIA, BERKELEY

David B. Graves, du College of Chemistry de Berkeley

la Fondation Nanosciences

... et vous, pour votre attention !

www.neel.cnrs.fr

28/02/2013

47