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Atomic Scale Modeling and Simulation 
for Micro, Nano and BioNano Technologies

Characterizing biomolecular flexibility, docking 
(Collab. Stanford Univ., M. Levitt; INRIA, N. Redon)

�Development of original modeling approach - Static M odes Eur. Phys. J. E 28, 17 (2009)

�Structural oncology modelling and simulation platfo rm
(SAMO RITC Project: RAS oncoprotein - Collab. Claudius Regaud Institute, G. Favre)

Providing a new expertise and modelling facilities 
to achieve physico-chemical characterization of 
oncomolecules

Objective
• restoring Ras switching mechanism 
(GTP hydrolysis / GAP interaction)
• preventing Ras from binding its effectors

Using Static Modes as a “probe” to:
• Exploring Ras biomechanical properties
• Screening of mutation impact
• Proposing custom design modifications 
• Building a Static Mode databank 
• Authorizing end users to custom in silico experiments
• Guide mutation experiments

Contact : marie.brut@laas.fr
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DNA Nanotechnologies (bio/non bio interactions)

�Self-assembly and chemistry of DNA/surface and
nanoparticles interactions

• Thiol or COOH DNA terminations on Au, Al, Cu surfaces and their oxides
• Intrinsic DNA interactions on Au, Al, Cu surfaces and their oxides
• Role of London interactions on DNA/Surface interactions

�Aptamer sensors (ANR VIBBnano)

• Impact of aptamer spacer termination on aptamer stability
• Design of aptamer tweezers

APL 100, 163702 (2012) 

AFM 22, 323 (2012) 
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2 Al + 3 CuO � Al2O3 + 3 Cu + ΔH
With ΔH = 21 kJ/cm3nEMHeat

Gas / PressureStimulus

Chemical species

Al/CuO NLs 
~ 50-100 nm/layer

Al/CuO NPs 
Ø ~ 50-120 

nm
Al/CuO  NWs

Bimetallics: Al/Ni
Thermites: Al / CuO

Compatible with technologies 
Integration towards “on a chip” nanoenergetics)
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� Called Barrier layers
� Define final properties (stability, 

reactivity, sensitivity, released Energy)

� Formation still not controlled during 
deposition process (and asymmetric)

� Final properties neither not mastered 
nor guaranteed

� Interfaces mastering = performances mastering

Process requires MODELING

NanoLayers requires ATOMIC SCALE
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Preliminary studies on bimetallics Al/Ni 
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� Macroscopic 1D model of 
atomic mix according to chemical 

kinetics

� Environment dependent rate 
equation formulation

� Mixing releases energy that 
translate into a temperature 

increase

∆T=
-∆E-dt × (Prad +Pconv )

3kb × n
i

LAl( )+n
i

LNi( )+n
i

INi( )( )
i

∑
� Thermal part :
Translate energy changes
into temperature changes

� Kinetic part : Time evolution 
4 differential equations with RK4-5 
scheme and a dynamic time step

k i = kBT

h
× exp

−∆E i

kBT











� Energetic part : 
Link between composition and 

energetic parameters (activation 
energies, rate constants & 

released energy using DFT 
calcul.)

Esystem = E layer∑
E layer = L Al( ) × EAl+ L Ni( ) × ENi

+ L Al( ) + L Ni( ) ( ) × EMix x( )+ I Ni( ) × E INi x( )+ V[ ] × EV x( )
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� Multiscale Modeling of technological process (oxidation, vapor deposition)

Characterization,
Process,

Technology…

DFTDFT
Up to 200 atoms, Time scale: picoseconds

Local Mechanisms

KINETIC MONTE CARLOKINETIC MONTE CARLO
Up to millions of atoms, Time scale: seconds

Material growth as a function
of temperature and pressure

XPS, AES, TEM, EDX …
IR, STM

Structures, E ac

Growth phenomena

EXPERIMENTSEXPERIMENTS

Process Scale



Technology and modeling of reactive composite materi als and 
systems
�Al-CuO nanolaminates: basic mechanisms of CuO/Al PV D growth 
through first principles calculations (DGA-REI funding)

•Mechanisms and energetics using DFT calculations of: 
• Al adsorption and penetration path on CuO 
• Dissociative chemisorption of CuO on Al (+ O, Cu separation)
• Cu aggregation and penetration
• Al extraction through oxygen exposure � Al oxidation
• Partial order and orientation of grown alumina ultrathin layer

Al oxide after 2 ML of Oxygen 
atom deposition

J. Chem. Phys. 137, 094707 (2012)

Thin Solid Films 520, 4768 (2012)
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energetic particles are introduced

Energy release can not be neglected

New KMC approach
Coupling motion of the energetic atom 
to the vibrational state of the system
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�Hyperthermal module for the treatment of atomistic motions 
and mechanisms related to exothermic reactions 
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KMC 
Core

Final Time
# max event

Hot 
AtomClassical 

Mechanisms List
Em, struct.

Mechanisms 
associated with Hot 

Atoms, arrivals, 
energetic particles

Vibrational 
frequencies

..,)(
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pk
pk

+= −−
∑

τ

Each normal mode is defined by a vibration angular frequency ω and a reduced displacement vector 

A pk ),( )(ou )(ov

� Coupling motion of the hyperthermal atom to 
the vibrational state of the system (phonons)

� trajectories

� Jump driven by activation barrier

=f( ),



�Hyperthermal module for the treatment of atomistic motions 
and mechanisms related to exothermic reactions 

• Validation on a 2D scheme coupled with analytical phonon description

Hyperthermal 
migration 

and trapping of an
Interstitial atom

Growth of reactive materials
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KMC includes:

Migrations

Defect generation

One vacancy can be created

Only on the 4 nearest neighbour sites



�Hyperthermal module for the treatment of atomistic motions 
and mechanisms related to exothermic reactions 
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Conclusions

� New methodology to deal with exothermic reactions i n kMC procedure

� Applications

� Mechanisms occurring in material oxidation (Si, Al)

� Deposition and ignition of nanostructured energetic materials, 
such as bimetallic (Ni/Al) or metal-oxide (CuO/Al) layers 

� Creation of defects under energetic radiations effects (NIEL: Non Ionizing 
Energy Loss) as in electronic devices in harsh environments, particularly in spatial 
applications or subject to solar wind. 
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COCOA KMC



Thank you

Sujet de thèse proposé au LAAS-CNRS

� “ Vers une intégration optimisée des matériaux énergé tiques : 
Modélisation multi-échelles et multi-physiques de l a croissance de 
multicouches Al/CuO “

� A diffuser largement … Merci
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