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Le diagramme multi-échelle
au SIMAP + JL Barrat
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Consequences of the timescale limitationConsequences of the timescale limitationConsequences of the timescale limitation

MD can not simulate diffusion-controlled processes

no alloy decomposition, segregation, vacancy clustering
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Consequences of MD timescale limitation



Static ApproachStatic ApproachStatic Approach

From the classical harmonic Transition State Theory:

Eigenfrequencies from

diagonalization of the 

Hessian matrix

• All information in the initial and activated states

• All we have to do (!) is to find the activated states for the 

processes of interest:

Nudged Elastic Band method

Activation-Relaxation Technique

Static approach
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Energy landscape of glassesEnergy landscape of glasses

Rodney, Tanguy, Vandembroucq, Model. Sim. Mat. Sci. Eng. 19, 083001 (2011)

Pawel Koziatek (1,2), Jean-Louis Barrat(1), David Rodney(2)

(1) SIMAP, INP Grenoble, FRANCE

(2) LiPhy, Université Joseph Fourier Grenoble, FRANCE



How to explore the PEL?

1- Choose random direction in phase space

2- Move along that direction + limited energy 
minimization in orthogonal hyperplane until a 
configuration with 1 negative curvature

3- Follow negative curvature to saddle point

4- Relax forward and backward to find the 
transition path

[Mousseau, PRE 1998
Cancès et al,JCP 2009

Rodney&Schuh, PRB 2009]

Singled-ended method to determine distributions of transition pathways

Activation-Relaxation Technique

find all transitions 

obtain representative samples and compute distributions

Exploration of the Potential Energy Landscape



Influence of the quench rate

EA

�Complex energy landscape

�Low-energy barriers due to high quench rate

�Complex energy landscape

�Low-energy barriers due to high quench rate

Wahnström
LJ potential
4000 atoms

~4000 transitions

[LJ units]

Distribution of activation energies



Attempt frequencies
Attempt frequencies
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Attempt frequencies
Attempt frequencies

� Very large frequency range

� Inverse Meyer Neldel rule:

� Very large frequency range

� Inverse Meyer Neldel rule:
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Laurent Proville(1), David Rodney(2)

(1) SRMP, CEA Saclay, FRANCE

(2) SIMAP, INP Grenoble, FRANCE

Low-temperature dislocation glide: 

quantum correction

Proville, Rodney, Marinica, Nature Materials 11, 845 (2012)



Thermally-activated plasticity

• High Peierls stress dislocations (ex: ½<111> screw dislocation in BCC crystals)

Thermally-activated nucleation of kink pairs

• Discrepancy between experimental and simulated Peierls stresses

[Basinski, Duesbery & Taylor, Can. J. Phys. 1971]



Kink-pair formation enthalpy

NEB in 3D cell with an initial path 
containing an expanding pair of kinks

Initial state Final state

Kink-pair expansionActivated state

100 MPa

Lomer dislocation in FCC Al

[Rodney, PRB 2007]
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Quantum  harmonic Transition State Theory

[Wigner, Trans. Faraday Soc. 1938]
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• Treat harmonic oscillators quantum mechanically: 
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The “multiscale phase-diagram”
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Challenges ahead

– Better relaxed glasses

– Exhaustive sampling is impossible

– Building database is difficult because glasses 

rarely return to previous configurations

– Transitions are controlled by free energy barriers 

between metabasins rather than single-step 

barriers between basins

T/Tc=0.75

kT

IS



Challenges ahead

• Realism of interatomic potentials

• Effect of non-glide stresses

• Quantum corrections for other processes: 

defect migration, low-temperature thermal 

conductivity, …
BCC Iron

EAM Marinica 2012





Dislocation kinetics

From Orowan’s law:

MD simulation at
1710 5.1 −×= sγ& Comparison Statics/Dynamics

[Rodney, PRB 2007]

Very accurate prediction 

of dislocation kinetics 

from static data and TST

Very accurate prediction 

of dislocation kinetics 

from static data and TST
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Attempt frequencies
Attempt frequencies

� Very large frequency range

� Inverse Meyer Neldel rule:

� Very large frequency range

� Inverse Meyer Neldel rule:
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Laurent Proville(1), David Rodney(2)

(1) SRMP, CEA Saclay, FRANCE

(2) SIMAP, INP Grenoble, FRANCE

Low-temperature dislocation glide: 

quantum correction

Proville, Rodney, Marinica, Nature Materials 11, 845 (2012)



Thermally-activated plasticity

• High Peierls stress dislocations (ex: ½<111> screw dislocation in BCC crystals)

Thermally-activated nucleation of kink pairs

• Discrepancy between experimental and simulated Peierls stresses



Kink-pair formation enthalpy

NEB in 3D cell with an initial path 
containing an expanding pair of kinks

Initial state Final state

Kink-pair expansionActivated state

100 MPa

Lomer dislocation in FCC Al

[Rodney, PRB 2007]
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Dislocation kinetics

If we assume
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MD simulation at
1710 5.1 −×= sγ& Comparison Statics/Dynamics

[Rodney, PRB 2007]

Lomer dislocation in FCC Al

17810113216 105.1~,10~,10~,105.0~,10~ −−−−− ×× smLmbsm D γνρ &

Very accurate prediction 

of dislocation kinetics 

from static data and TST

Very accurate prediction 

of dislocation kinetics 

from static data and TST
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Quantum Transition State Theory

[Wigner, Trans. Faraday Soc. 1938]
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• Treat harmonic oscillators mechanically:
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