

Low-dimensional magnetism in DFT

G. Radtke

IMPMC UMR 7590 CNRS, Université Pierre et Marie Curie (previously @ IM2NP UMR 7334 CNRS, Aix-Marseille Université)

A. Saúl

CiNAM UMR 7325 CNRS, Aix-Marseille Université

G. Rousse, Y. Klein IMPMC UMR 7590 CNRS, Université Pierre et Marie Curie

People working on modelisation in the lab :

Ch. Brouder (DR-CNRS sec. 3) D. Cabaret (MdC-Paris 6) M. Calandra (DR-CNRS) M. Casula (CR-CNRS, sec. 3) M. Lazzeri (CR-CNRS) F. Mauri (DR-CNRS) L. Paulatto (IR-CNRS) M. Saitta (PR-Paris 6)
G. Ferlat (MdC-Paris 6)
M. Blanchard (CR1-CNRS sec. 18)
E. Balan (CR-IRD)
A. Juhin (CR1-CNRS sec. 5)
M.A. Arrio (CR1-CNRS sec. 5)
G. Radtke (CR-CNRS, sec. 15)

Quantum theory of materials with and beyond DFT

Prediction of materials properties based on ab initio methy

- > 2D materials beyond graphene
- Molecular superconductivity
- Ab-initio theory of charge and heat transport in nanostructures
- Beyond DFT : Quantum Monte-Carlo

▲ MoS₂ becomes metallic and superconducting once doped by K or Rb intercalation (Tc~10 K) or in a FET [Taniguchi et al., APL 101, 042603 (2012)]

Materials modeling @ IMPMC

Disordered matter

Microscopic structure of liquids and glasses in high-pressure/hightemperature conditions with ab initio molecular dynamics

- ▶ structure of simple glasses and crystals (B₂O₃) [Nature Mat. 2012]
- polyamorphism under high temp./pressure in GeO₂ [PRB 2012]
- nucleation phenomena in glasses
- ▶ Ionic solvation in supercritical fluids [J. Chem. Phys. 2011]

▲ Ag⁺ ions in supercritical water

▲ Prediction of a porous B₂O₃ polymorph.

• IR spectra in α -Fe₂O₃ and SEM image of the sample.

Geomaterials

Vibrational and isotopic properties in minerals and molecules in DFT

IR and Raman modeling in α-Fe₂O₃ [Am. Min. 2008
 Isotopic fractionation in cosmochemical processes
 [Earth Plan. Sci. Lett. 2012]

Materials modeling @ IMPMC

Condensed matter under extreme conditions

Theory of matter under extreme conditions Ab initio calculation of phase diagrams, Raman spectra modeling, molecular dynamics

• Molecular dynamics of dissociation of Water under an electric field [PRL 2012]

Pressure-induced polyamorphism in salty water [PRL 2011]

▶ Pressure-induced transformations of AIPO₄ [Nature Mat. 2007]

Core-level X-ray spectroscopies XANES, XMCD, RIXS-MCD

one-electron (Xspectra in Quantum Espresso)
multi-electronic (ligand-field multiplets)

 Snapshot of a typical dissociationdiffusion mechanism in water under an electric field

Core-hole effect on calculated Al-K edge in α -Al₂O₃.

To interpret experiments, systems of localized moments are often modeled with Heisenberg Hamiltonians :

$$\hat{H} = \hat{H}_0 + \sum_{i>j} J_{ij} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j$$

The determination of the dominant couplings based on geometry is often difficult, sometimes misleading ...

Two surprising systems based on magnetic dimers revealed by DFT :

 CsV_2O_5 : where the magnetic dimers are NOT the structural dimers

Ba₄Ru₃O₁₀ : where structural trimers behave as magnetic dimers

Localized magnetism in CsV₂O₅

Monoclinic structure $P2_1/c$ Alternating layers of Cs and V_2O_5

Structure of the layers

Two different V atoms in the layers

 V_2O_5

Cs

 V_2O_5

V⁵⁺ in tetrahedra

non-magnetic (3d⁰)

V⁴⁺ in distorted square pyramids sharing edges

Confirmation : the magnetic susceptibility

J. Mur and J. Darriet *C. R. Acad. Sc. Paris* **300** (1985) 599

Isolated dimers : J = 156 K

Isolated dimers : J = 146 K

Magnetic interactions in CsV₂O₅

$$\hat{H} = \hat{H}_0 + \sum_{i>j} J_{ij} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j$$

Magnetic couplings up to the fourth nearest neigbours :

 J_1 (3.073 Å) intradimer J_2 (5.386 Å) interchain J_3 (5.503 Å) intrachain J'_4 (5.950 Å) interchain J''_4 (6.653 Å) interchain

Simplified J_4 interaction: $J_4=(J'_4+J''_4)/2$

 $|FM\rangle$

Estimation of J from DFT calculations?

A system formed by a single spin-1/2 dimer $\hat{H} = \hat{H}_0 + J\hat{\mathbf{S}}_1\hat{\mathbf{S}}_2$

Magnetic excitations written as a Heisenberg Hamiltonian

Spin contaminated nature of the AFM solution (not an eigenstate of S²)

Heisenberg Hamiltonian for a general system

$$\hat{H} = \hat{H}_0 + \sum_{i>j} J_{ij} \hat{\mathbf{S}}_i \hat{\mathbf{S}}_j$$

Defining a DFT (collinear spin arrangement) state

A Kohn-Sham state (determinant) with a given projection of the spin in atom *i*

$$\hat{S}_{iz}|\alpha\rangle = \pm \frac{1}{2}|\alpha\rangle$$

The mean value of the Hamiltonian (the DFT total energy) :

$$\epsilon_{\alpha} = \langle \alpha | \hat{H} | \alpha \rangle = \epsilon_0 + \sum_{i>j} \frac{J_{ij}}{4} \sigma_i \sigma_j \qquad \sigma_i = \pm 1$$

can be written as an Ising Hamiltonian with the same J's

Spin configurations

64-atom supercells (doubled along the chain direction z)

Mapping of DFT energies: fitting procedure

Optimisation of the Ising parameters

$$F = \sum_{\alpha=1}^{28} g_{\alpha} \left(\epsilon_{\alpha} - \epsilon_0 - \sum_{i=1}^{4} a_{i\alpha} J_i \right)^2$$

Ex. Int. (K)	J ₁	J ₂	J ₃	J ₄
PBE0	89	-23	188	-3
PBE	180	-54	378	-11

- Dominant AF interactions along the chain
- Third nearest- neighbor $J_3 > J_1$
- Weak and ferromagnetic inter-chain interaction
- A semi-local functional GGA increases the amplitudes by ~ 2 with respect to the exact exchange one

Motivated by the symmetry of the atomic orbitals

A "not so localized" system : Ba₄Ru₃O₁₀

Experimental results

Fig. 6. Thermal variation of the reciprocal susceptibility of $Ba_5Ru_3O_{12}$ (circles, observed; full line, calculated).

- C. Dussarat *et al. J. All. Comp.* **233** (1996) 15
- Curie Constant consistent with three S=1 (low-spin) Ru⁴⁺ per trimer @ high temperature

Y. Klein *et al. Phys. Rev. B* **84** (2011) 054439

- AFM ground-state of a new kind. From neutron diffraction :
 - Ru(2) show an AFM order
 - Ru(1) have NO ordered moments

Non-magnetic DOS

According to Stoner criterion, different behavior toward ferromagnetic instability

Non-magnetic DOS

We expect σ -bonding between $|t_{2g}^{0}\rangle$ states to form bonding, non-bonding and

$$\begin{split} |\psi_b\rangle \ &= \ \frac{1}{\sqrt{4\left(1+\sqrt{2}S\right)}} \left(|\phi_{(2)}'\rangle + \sqrt{2} |\phi_{(1)}\rangle + |\phi_{(2)}''\rangle \right) \\ |\psi_{nb}\rangle \ &= \ \frac{1}{\sqrt{2}} \left(|\phi_{(2)}'\rangle - |\phi_{(2)}''\rangle \right) \\ |\psi_{ab}\rangle \ &= \ \frac{1}{\sqrt{4} \left(1-\sqrt{2}S\right)} \left(|\phi_{(2)}'\rangle - \sqrt{2} |\phi_1\rangle + |\phi_{(2)}''\rangle \right) \end{split}$$

anti-bonding MOs:

Non-magnetic DOS

Ferromagnetic calculations confirm the weaker polarization of Ru(1):

Μ (μ _B)	Ru(1)	Ru(2)	_
GGA	0.34	0.94	reduced from 2 $\mu_{\rm B}$
GGA+U	0.09	1.12	to covalency

Definition of the couplings

Mean value of the Heisenberg Hamiltonian on the DFT states (S=1 on Ru(2)) :

$$\epsilon_{lpha} = \langle lpha | \hat{H} | lpha
angle = \epsilon_0 + \sum_{i>j} J_{ij} \sigma_i \sigma_j$$
 with $\sigma_i = \pm 1$

Results : GGA and GGA+U

- ➡ No single set of J's can fit the entire spectrum of calculated magnetic excitations
- A subset of low energy configurations can be used instead

Ex. Int. (K)	J _{trimer}	J_{chain}	J_{plane}	mec
GGA	344	86	25	t _{2a} +
GGA+U	265	30	10	-

What about the susceptibility ?

Based on DFT results, the susceptibility is fit with a model of coupled (mean-field) spin S=1 dimers hold by Ru(2):

$$\chi = rac{\chi_{
m dim}}{(1+\lambda\chi_{
m dim})} + \chi_0$$

with :

 $\lambda = \frac{J_{\text{inter}}}{N_A (g\mu_B)^2}$ $J_{\rm inter} \approx 2 J_{\rm chain} + 2 J_{\rm plane}$

$$\chi_{
m dim} = rac{2eta g^2 \mu_B^2 N_A [1+5\exp(-2eta J_{
m trimer})]}{[3+\exp(eta J_{
m trimer})+5\exp(-2eta J_{
m trimer})]}$$

Confirms the picture of strong AFM dimers coupled by weaker AFM interdimer interactions stabilizing a long-range Néel order.

Thank you !

For a two-site, two-electron system :

The WF calculated in DFT for a FM spin arrangement

$$\psi^{\mathrm{KS}}(S_Z = 1) = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_a(\mathbf{r_1})\alpha(\sigma_1) & \phi_b(\mathbf{r_1})\alpha(\sigma_1) \\ \phi_a(\mathbf{r_2})\alpha(\sigma_2) & \phi_b(\mathbf{r_2})\alpha(\sigma_2) \end{vmatrix}$$

The WF calculated in DFT for a AFM spin arrangement

$$\psi^{\mathrm{KS}}(S_Z = 0) = \frac{1}{\sqrt{2}} \begin{vmatrix} \phi_a'(\mathbf{r_1})\alpha(\sigma_1) & \phi_b'(\mathbf{r_1})\beta(\sigma_1) \\ \phi_a'(\mathbf{r_2})\alpha(\sigma_2) & \phi_b'(\mathbf{r_2})\beta(\sigma_2) \end{vmatrix}$$

The assumption that the spatial WF does not depend on the magnetic order is questionable for strongly covalent systems

Orbitals participating to the superexchange

Electron density associated to a single V⁴⁺ ion : the only one in a flipped spin

The magnetic orbital presents :

- Dominant $d_{v}^{2} z^{2}$ orbital on the V⁴⁺ ion
- Specific p symmetry on the neighboring O
- \bullet Non zero density on the V^5+ ion

The AFM ground-state

Both GGA and GGA+U predict the same AFM (exp.) ground-state order

Ru(2) hold a spin S=1 through the polarization of t_{2q}^+ and t_{2q}^- states

Ru(1) is paramagnetic through a double occupation of both t_{2q}^+ and t_{2q}^- states

 Kinetic superexchange mechanism mediated by paramagnetic Ru(1) :

