

Modélisation Moléculaire de la Réponse Mécanique de Matériaux Amorphes

A.Tanguy http://www-lpmcn.univ-lyon1.fr/~atanguy

T. Albaret, C. Fusco, C. Goldenberg, B. Mantisi, A. Mokshin, M. Talati, D. Tanguy, M. Tsamados

Institut Lumière Matière Equipe Théorie et Modélisation Etude Multi-échelle de la réponse mécanique des matériaux solides Université Claude Bernard – Lyon 1 (France)

T. Albaret Simulations Multi-échelles Méthode LOTF.

D. Tanguy

Simulations Monte-Carlo Défauts - Joints de grain.

A. Tanguy Physique statistique et Réponse Mécanique Matériaux Désordonnés

Modélisation Moléculaire de la Réponse Mécanique de Matériaux Amorphes

Exemples de Matériaux Amorphes.

Réponse sous cisaillement d'un verre de Lennard-Jones

Hétérogénéités de déformation

Dynamique Locale et bandes de cisaillement

Modules d'élasticité locaux et modes de vibration

Effet de la pression sur la réponse de la silice

Courbe de charge

Comportement en compression

Rôle de la directionalité des liaisons

Réponse rhéologique Réponse acoustique

Exemples de Matériaux Amorphes.

Lennard-Jones Glasses Amorphous « silicon »

N = 100 to 400 000 particles L: 10 α to 630 α (2D) 5 α to 74 α (3D) ρ : 0.87 to 1.4

- Contraction of the second seco
 - N = 32 768 atoms L = 84.8 Å ρ = 2.4 g/cm³

Silica glass

Sodo-silicate glass (1-x)SiO₂ + x Na₂0

 $\label{eq:N} \begin{array}{l} {\sf N} = 3 \ 000 \ to \ 375 \ 000 \ atoms \\ {\sf L} = 36 \ to \ 180 \ {\rm \AA} \\ \rho {=} \ 2.2 \ to \ 3 \ g/cm^3 \end{array}$

N = 2 400 to 8 100 atoms L = 33 to 49 Å ρ = 2.29 g/cm³ x=5% to 30%

$V_{ij}(r) = 4\epsilon_{ij} \left\{ \left(\frac{\sigma_{ij}}{r}\right)^{12} - \left(\frac{\sigma_{ij}}{r}\right)^6 \right\} \mathbf{E}_{\mathrm{SW}} = \Sigma_{i,j} (\mathbf{A} \cdot \mathbf{r}_{ij}^{-4} - \mathbf{B}) \cdot \mathbf{e}^{(\mathbf{r}_{ij} - \mathbf{a})^{-1}}$	E _B	$_{\rm KS}({\rm r}) = -\frac{1}{4}$	$\frac{\mathbf{q}_{i}\mathbf{q}_{j}}{4\pi\varepsilon_{0}\mathbf{r}} + \lambda$	$A_{ij}e^{-B_{ij}r}$ –	$\frac{C_{ij}}{r^6}$	V(r) = L	$A\exp(-r/\rho)$	$) - C/r^{6}$
$+ \sum_{i,j,k} \lambda (\cos \theta_{jik} + 1/3)^2 \cdot e^{\gamma \cdot (r_{ij} - a)^{-1} + \gamma \cdot (r_{ik} - a)^{-1}} \text{ with } (i, j) \in \{\text{Si}, \text{O}\}$					Atomic	Interaction	A/eV	$ ho/{ m \AA}$
	i-j	A_{ij} (eV)	b_{ij} (Å ⁻¹)	c_{ij} (eVÅ ⁶)	charges	O ^{-1.2} –O ^{-1.2}	1844.7458	0.343645
C S	D-O Si-O	1388.7730 18003.7572	2.76000 4.87318	175.0000 133.5381	$q_0 = -1.2$ $q_{\rm Si} = 2.4$	$Si^{2.4}-O^{-1.2}$ Na ^{0.6} -O ^{-1.2}	13 702.905 4383.7555	0.193817 0.243838

Exemple: obtention d'un verre de silice

Quelques propriétés des matériaux amorphes: élasto-plasticité

$E_{amorphe} \approx E_{crist.} / 1.3 < E_{crist}$

Bandes de cisaillement:

Quelques propriétés des matériaux amorphes: propagation du son

🌯 iMUST 🕻

Capacité calorifique élevée: $\delta Q = C_v . dT$

(densité élevée)

Armer Hennel-de Branzen

du / dSdt

 $= -\lambda.dT / dx$

(libre parcours moyen)

Verre de Lennard-Jones: Elasticité Locale

Réponse sous cisaillement d'un verre de Lennard-Jones:

Calcul des modules d'élasticité locaux:

C. Goldenberg (2007)

🗞 iMUST AN R 🔅 🎯 Lyon 1 🚥

Modules d'élasticité locaux comme prédicteurs de la plasticité:

Réarrangement localisé (zone de cisaillement):

Bande de Cisaillement Elémentaire:

A. Tanguy, M. Tsamados and B. Mantisi (2010)

Réarrangement localisé:

Un unique mode localisé

Superposition de modes localisés

A. Tanguy et al. (2010)

imust And R Control Lyon 1

Le plus faible module d'élasticité local C1 permet de prédire l'activité plastique

Silice SiO₂: Effet de la pression

Cas de la silice: Effet de la pression

SiO2: effet d'une densification permanente

La décroissance de la **contrainte** peut être reliée à l'**inhomogénéité** de la réponse.

Cas des silicates: Effet de la composition

Compression Hydrostatique de SiO₂:

GeLyon 1

Silicium Si (Stillinger-Weber): Rôle de la directionalité des liaisons

Cas du « silicium amorphe »: effet de la directionalité des liaisons.

C. Fusco et al. (2010)

1
1
I
1
1
1
1
1
1
1
1
1
1
1

Cas du « silicium amorphe »: effet de la directionalité des liaisons.

(c)

40 60 80 100 20 0

x (Å)

20 40 60 8010 920

x (Å)

80 60 40 y (Å

20

60 40 y (Å)

0

(e) PE (eV/Å³

(f) PE (eV/Å3

0.8 0.4

TABLE III: Yield stresses σ_Y , width of the plastic event at the yield point W and corresponding values of b obtained by using Eq. (5) for different values of λ for a A-Si system prepared with a quenching rate of 10^{11} K/s, and for different values of the quenching rate at $\lambda = 21$.

λ	ν	W(A)	$\sigma_Y(\text{GPa})$	$2\pi^{-1}b$ (Å)
17	0 380	6.11	2.01	1.64
19	0.000	6.11	2.80	1.75
21	1 0.365		4.23	1.75
23.5	0.347	5.13	5.47	1.67
26.25	0.331	4.73	6.64	1.59
40	0.318	4.57	10.13	1.59
quench.	rat0.273	W(A)	σ_Y (GPa)	b (Å)
$10^{11} { m K/s}$	5	5.63	4.23	1.75
$10^{12} { m K/s}$	3	5.39	3.53	1.61
$10^{13} { m K/s}$	5	5.39	3.0	1.56
$10^{14} {\rm ~K/s}$	5	5.30	2.32	1.45

width

Contrainte de Peierls:

$$\sigma_{xy}^* = A e^{-2\pi W/b}$$

where $A = 2C_{44}/(1 - \nu)$

Cas du « silicium amorphe »: Effet du taux de cisaillement.

🌯 iMUST

J K 🔅 🍥 Lyon 1

$$S(\mathbf{q},\omega) = \frac{2}{NT} \left| \sum_{i=1}^{N} e^{-i\mathbf{q}\mathbf{r}_{i}} \int_{0}^{T} u(\mathbf{r}_{i},t) e^{i\omega t} dt \right|^{2}$$

$$Modes Transverses$$

W Modes Longitudinaux

Analyse du comportement mécanique vs. dynamique locale

Importance des **hétérogénéités** de déformation. Identification des **réarrangements** caractéristiques. Organisation **spatiale** des modules d'élasticité locaux.

Sensibilité à la contrainte extérieure (pression, cisaillement..)

Réponse acoustique dépendant des **interactions**. Modes de vibration **quasi-localisés**. Diffusons. **Prédiction** de l'endommagement plastique.

Le rôle des défauts structuraux dépend des interactions.

A. Tanguy, J.P. Wittmer, F. Léonforte and J.-L. Barrat, PRB *66* 174205-1-17 (2002)
J.P. Wittmer, A. Tanguy, J.-L. Barrat and L. Lewis, EPL *57* 423-429 (2002)
A. Tanguy, F. L éonforte, J.P. Wittmer and J.-L. Barrat, App.S.S. *226*, 282-288 (2004)
F. Léonforte, A. Tanguy, J.P. Wittmer and J.-L. Barrat, PRB *70* 014203-1-12 (2004)
F. Léonforte, A. Tanguy, R. Boissière, J.P. Wittmer and J.-L. Barrat, PRB *72* 224206-1-11 (2005)
F. Léonforte, A. Tanguy, J.P. Wittmer and J.-L. Barrat, PRL *97* 055501-1-4 (2006)
G. Goldenberg, A. Tanguy and J.-L. Barrat, EPJ E *20*, 355-364 (2006)
C. Goldenberg, A. Tanguy, F. Léonforte and J.-L. Barrat, EPJ E *26* 283-293 (2008)
M. Tsamados, A. Tanguy, F. Léonforte and J.-L. Barrat, EPJ E *26* 283-293 (2008)
M. Talati, T. Albaret and A. Tanguy, EPL *86* 66005 (2009)
M. Tsamados, A. Tanguy, C. Goldenberg and J.-L. Barrat, PRE *80* 026112-1-17 (2009)
A. Tanguy, B. Mantisi and M. Tsamados, EPL *90* 16004-1-5 (2010)
C. Fusco, T. Albaret and A. Tanguy, PRE *82* 066116-1-11 (2010)
B. Mantisi, A. Tanguy, G. Kermouche and E. Barthel, EPJ B *85* 304 (2012)

D. Rodney, A. Tanguy and D. Vandembroucq, MSMSE Topical 19 083001 (2011).