UPR 3346				
Univ. Poitiers / ENSMA	Fluides, thermique et combustion		ue	Génie mécanique et systèmes complexes
ISI	Homogónóisati		S. Bro	chard, J. Godet, J. Durinck,
Macro	Homogeneisation		J. Colin, L. Pizzagalli	
	Eléments finis		Cloquage / adhésion	
Physique et mécanique des matériaux	Dynamique moléculaire		Plasticité des matériaux / nanos	
			Défauts	liés à l'irradiation
	DFT		Croissan	ice
Electron	GW, BS,		Pptés op complex	otiques de matériaux ses

Is it possible to make a realistic amorphous silicon model?

Andreas Pedersen¹, Laurent Pizzagalli², Hannes Jónsson¹

¹ University of Iceland, Reykjavik, Iceland

² Department of Physics and Mechanics of Materials P' Institute, CNRS - University of Poitiers

a-Si \rightarrow a model amorphous material with short range order

- \rightarrow a-Si is less dense than c-Si (1.8%)
- **Facts** \rightarrow average 1st neighbors distance and angle are known (dispersion too)
 - → Energy (enthalpy) difference between c-Si and a-Si ranges from 0.07 eV to 0.15 eV → Presence of coordination defects

The paracrystallinity assumption: is a-Si fully disordered?

 \rightarrow Evidence for medium range order in a-Si (created by irradiation or indentation) \rightarrow May be explained by paracrystallinity (RMC)

 \rightarrow Do a fully disordered (no crystal grains) or perfectly relaxed (no defects) a-Si exist?

- \rightarrow Is there a unique experimental a-Si state ?
- \rightarrow Realistic amorphous Si models are needed.

a-Si model: the Continuous Random Network

INSTITUT

- \rightarrow Based on an idea: the best a-Si model is a Continuous Random Network with no defects
- → CRN models are built by rules, and include only 4-fold coordinated Si atoms

Barkema and Mousseau, PRB (2000)

Random 📩 a-Si

 \rightarrow No defects in the final structure

 \rightarrow Cooking recipes require a prior knowledge of the structure to obtain

a-Si model: the quenched liquid

- \rightarrow Try to mimic quenching experiments
- \rightarrow No preconceived notion of the final structure, use only atomic interactions

- \rightarrow Presence of point defects in the final structure
- \rightarrow Results depend on the classical potential used (and on the quench rate too)

CRN

- "Rules" dependence
- Requires potentials relaxation
- + No point defects
- + Very good RDF, θ

Quenched liquid

- Potential dependence
- Ab initio not possible
- + Point defects in final structure
- + Very good RDF, θ

- \rightarrow CRN typically considered as ideal a-Si
- \rightarrow CRN used as starting point for investigating vacancies in a-Si
- \rightarrow Averaged quantities (RDF, θ) cannot be used as a good quality criterion

Is it possible to push further the state of the art?

New direction: instead of examining averaged properties, focus on extensive quantities !

- \rightarrow Final density is largely spread in simulated models
- \rightarrow Few calculations are close (but still too high) in energy

Our goal: focus on energy and density

Starting point: slowly quenched liquid silicon

- \rightarrow The structural parameters are in fair agreement with experiments
- \rightarrow The final excess energy (rel. to c-Si) is 0.224 eV/at.
- \rightarrow With a reference value of 0.1 eV/at., about 27 eV to gain !!!

The strength of ab initio annealing

The strength of ab initio annealing

The strength of ab initio annealing

- \rightarrow Ab initio greatly lowers the energy (relaxation or electronic effect ?)
- \rightarrow Density cannot be optimized during annealing (\rightarrow scaling)
- \rightarrow Final energy/density close to experiments

Formation energy of vacancy in imperfectly relaxed a-Si

22/02/2013

216 atoms

215 atoms

 $E_f = E(215) + E(1) - E(216)$

→ If the amorphous network is not well relaxed, Ef can be negative ! Miranda et al., J. Non. Cryst. Solids (2004)

The ultimate refining: the PDA procedure

Réunion plénière GDR MODMAT

The ultimate refining: the PDA procedure

 \rightarrow The best optimized sample reaches the upper range of experiments

 \rightarrow Density is slightly too high

Final model: structural properties

Calc.

2.351

108.2°

10.5°

Réunion	plénière	GDR	MODMAT

Laurent Pizzagalli

22/02/2013

 \rightarrow Considering E_f = 0.1 eV, the amount of thermal vacancy at RT is about 2%

Is the exp/model energy comparison complete?

 $\Delta H = \Delta U + P\Delta V$ = $\Delta U(ions+e^{-}) + \Delta U(ZPE) + \Delta U(T\neq 0) + P\Delta V$

Electronic structure effects: beyond standard DFT-GGA/LDA ? (hybrid functional, QMC) LDA model: $\Delta U=0.148 \text{ eV/at.} / \rho_a / \rho_c = 1.009$ Hybrid calc. : $\Delta U=0.18 \text{ eV/at.}$ (PBE0) ; E=0.20 eV/at. (HSE06)

Zero-point energy: calculated using classical potentials and harmonic approximation $\Delta ZPE = -0.005 \text{ eV/at.}$

 \rightarrow T=0: Harmonic approximation

 $\Delta U(T = 938K) = +0.005 \text{ eV/at.}$

PAV: Considering a 2% expansion of a-Si/c-Si, and atmospheric pressure $P\Delta V = 0.0000025 \text{ eV/at}.$

 \rightarrow Should we consider anharmonic effects (thermal expansion, e⁻-ph coupling)?

Final model: Do a fully disordered network really exist?

Our model energy is in the upper range of measurements !

Effect of remaining defects ?

CRN model: E=0.149 eV/at. / ρ_{a}/ρ_{c} = 0.967

The paracrystalline assumption

PC model: E=0.115 eV/at. / $\rho_a/\rho_c = 0.994$

The only (?) way to decrease energy is by introducing "crystallinity" into the system

 \rightarrow Several experimental a-Si states possible (depending on H presence) ?

 \rightarrow Can a perfectly continuous random network exist in the real world?

Conclusions

New procedure for obtaining high quality optimized Si amorphous models based on an energy criterion, combining first-principles annealing and a point defect removal procedure

The energy is a critical quantity ... the density is not one

Our investigations may hint that a fully continuous random network can not be obtained in experiments

And now ???

Explore the energy landscape for vacancy migration using saddle-point search techniques

Fabrication of amorphous silicon

Various deposition techniques (PECVD, HWCVD, EBE)

Irradiation of c-Si (by Si ions or other particles)

Indentation

Laser quenching

Applications of a-Si

- \rightarrow Lower efficiency than crystalline or polycrystalline silicon
- \rightarrow But much lower production cost, and deposition easier in all aspects

- \rightarrow Light photovoltaic applications
- \rightarrow Liquid crystal displays
- \rightarrow Printed electronics

Structural properties of a-Si: RDF

- \rightarrow Well-resolved 1st neighbor peak (same distance than in crystal)
- \rightarrow The disorder is more pronounced for distant neighbors
- \rightarrow A dangling bond density of 12% ????

Réunion plénière GDR MODMAT

Structural properties of a-Si: angular dispersion and density

 \rightarrow The angular disorder is small in all investigations

 \rightarrow a-Si is less dense than c-Si by 1.8%

Energy properties of a-Si: calorimetry

 \rightarrow The relative enthapy of a-Si ranges from 0.07 to 0.15 eV/at

 \rightarrow The relaxation state is very dependent on the history

Presence of a medium range order in a-Si?

Treacy et al, Science 335, 950 (2012)

 \rightarrow Fluctuation Electron Microscopy exp. lead to a structured signal for correlation beyond the 1st neighbors.

What is an amorphous material? a-Si?

INITIAL

Le petit Larousse

"Dans la matière solide, l'état amorphe est un état rigide désordonné. Il se différencie de l'état cristallin par l'absence d'ordre à longue distance. Les verres en constituent l'exemple type."

Wikipedia

"In condensed matter physics, an amorphous or non-crystalline solid is a solid that lacks the long-range order characteristic of a crystal"

"A glass is an amorphous solid that transforms into a liquid upon heating through the glass transition."

→ a-Si is a solid lacking long-range order, BUT with short-range order. It is then an amorphous material

→ Whether a-Si can be called a glass is still a matter of debate