Formation des lacunes et champ de déformation locale dans le nickel par calculs *ab initio*

Arnaud Metsue

Abdelali Oudriss, Jamaa Bouhattate, Bachir Osman Hoch, Esaïe Legrand et Xavier Feaugas

Thématiques de recherche

- Thématique 4 du GDR « Phénomènes spécifiques »
- Durabilité et protection des matériaux sous contraintes environnementales
- Diffusion et solubilité dans les matériaux de construction

<u>Génie civil:</u> diffusion du Cl dans les minéraux composant les bétons (SiO₂, CaO...)

Structures métalliques:

Diffusion de H dans les aciers et les alliages de nickel

Modélisation multi-échelles

Diffusion de H dans le nickel

- fragilisation par l'hydrogène
- Influencée par la présence de défauts critallins

Exemple: Influence des joints de grains

But de l'étude

Mise en évidence de l'effet des lacunes sur la diffusion de H dans le nickel par calculs *ab initio*

Ni ferromagnétiqueEtude jusqu'à T Curie = 627 K

•Grandeur thermodynamique de formation: H^f(T), S^f(T)?

- •Concentration de lacunes dans les conditions d'utilisation?
- •Champ de déformation induit par le défaut?

Méthode: calculs ab initio

- •DFT implémentée dans Quantum ESPRESSO
- Pseudopotentiels PAW + Approximations GGA et LDA
- • E_{cutoff} = 60 Ry + grille 16X16X16 (convergence Δ E< 10⁻⁴ Ry)
- Δ E< 10⁻⁹ Ry : cycle SCF
- •Forces < 10⁻⁵ Ry/u.a : relaxation de la structure

Enthalpie de formation à P=0, T=0

$$H^{f}(P,T=0) = H^{vac}(N-1,P,T=0) - (N-1)H^{at}(P,T=0)$$

Megchiche et al., 2006, Phys Rev B Nazarov et el., 2012, Phys Rev B...)

Effet de la température

Energie libre: F(V,T) = U - TS

Développement en température: F(V,T)=F(0)+F(1)+F(2)....

A l'ordre 2, approximation quasi-harmonique: ω = fréquence de vibrations des atomes

$$F(V,T) = U_0(V) + \frac{1}{2} \sum_{q,j} h\omega_j(q,V) + k_B T \sum_{q,j} \ln[1 - \exp(-h\omega_j(q,V)/k_B T)]$$

Energie statique Energie de point Contribution de la vibration atomique

Contribution des excitations électroniques à l'entropie

$$S_{el}(V,T) = -k_B \int n(\varepsilon) \begin{cases} f(\varepsilon,T) \ln f(\varepsilon,T) \\ +(1-f(\varepsilon,T)) \ln(1-f(\varepsilon,T)) \end{cases} d\varepsilon$$

f(& ,T) occupatior de l'état *E*

(Watson et al., 1984, Phys Rev B, Eriksson et al., 1992, Phys Rev B)

Calcul des spectres de phonon

Grandeurs thermodynamiques du Ni parfait

Influence des lacunes sur le spectre de phonons

Spectre de phonons du Ni pur ferromagnétique contenant 1.6.10⁻² lac/at (Calcul GGA)

- H^f(P=0) dépend faiblement de T pour T<T_{curie}
- Comportement similaire dans Al

(Carling et al., 2000, Phys Rev B)

Entropies de formation $S_{el}(V,T) = -k_B \int n(\varepsilon) \begin{cases} f(\varepsilon,T) \ln f(\varepsilon,T) \\ +(1-f(\varepsilon,T)) \ln(1-f(\varepsilon,T)) \end{cases} d\varepsilon \quad \bigcirc \quad S_{vib}(P,T) = -\left(\frac{\partial G_{qh}}{\partial T}\right)$ $S_{elec,vib}^{f}(P,T) = S_{elec,vib}^{vac}(N-1,P,T) - (N-1)S_{elec,vib}^{at}(P,T)$ vibrational electronic **S^f**_{vib} > **S**^f_{elec} 0.8 Formation entropy (k_B) 0.6 $S_{vib}^{f} = 0.8 k_{B}$ 0.4 (~1.1 k_B dans Al) 0.2 (Carling et al., 2000, Phys 0 Rev B) 100 200 300 400 500 600 0 T(K)

Concentration de lacunes

Champ de déformation locale

Déformation radiale et angulaire dans le plan (001)

Déformation radiale uniquement Zone en compression jusqu'au 3e voisin de la lacune Effet similaire dans Al et métaux cubique centré

(Yamamoto et al., 1973 J Phys F, ; Matthai et al., 1985, Phil Mag A)

Solubilité de H augmente dans le champ de déformation
Contribution à l'augmentation de [H] avec [lacune]?

Conclusions

Détermination des paramètres thermodynamiques de formation des lacunes et du champ de déformation locale de Ni ferromagnétique jusqu'à 630 K

- •Calcul *ab initio*
- •Approximation quasi-harmonique
- •10⁻²⁵ <[lacune] <10⁻¹³ dans les conditions d'utilisation du matériau
- Zone en compression confinée autour des 2 premiers voisins du défaut

