

Plasticité des minéraux du manteau terrestre

Philippe Carrez

Unité Matériaux et Transformations CNRS UMR 8207 Université de Lille 1 Villeneuve d'Ascq

Le laboratoire

IET se décline en quatre équipes :

Matériaux Moléculaires et Thérapeutiques

Métallurgie Physique et Génie des Matériaux

Physique des Minéraux

Ingénierie des Systèmes Polymères.

Equipe : Métallurgie Physique

Modélisation multi-échelle de matériaux métalliques au voisinage ou loin de l'équilibre thermodynamique, en présence ou non de sollicitations extérieures (chocs, irradiation, contraintes mécaniques)

Permanents :

- A. Legris
- R. Besson
- L. Thuinet
- C. Becquart

Post doctorants :

A. De Backer

J. Boisse

J.B. Piochaud

Doctorants :

H. Rouchette

J. Kwon

-Alliages de Zr -Aciers ferritiques et austénitiques -W -NiAl

CUVE DU RÉACTEUR

Equipe : Physique des Minéraux

=> astrominéralogie

=> **plasticité** des minéraux sous haute pression

<u>Permanents :</u> Ph. Carrez, P. Cordier, K. Gouriet <u>Post doctorants :</u> P. Hirel, F. Boioli <u>Doctorants :</u> A. Kraych, S. Ritterbex

Projet ERC Adv. Grant

Plasticité des minéraux du manteau terrestre

La plasticité des minéraux: du point de vue expérimental

L'approche numérique: Objectifs

. Structures de cœur de dislocations dans les minéraux du manteau

. Friction de réseau et Contrainte de Peierls

. Effet de pression

. Effet de température et mobilité

. Fluage

Modélisation des CRSS

Echelle mésoscopique / code DD

DFT/calculs par potentiels

DFT

Taille des volumes simulés / nombre d'atomes dans les mailles élémentaires (> 20)

Calcul de γ-surface (énergie de faute d'empilement généralisé)

Approche semi-continu de type Peierls-Nabarro

Potentiels

$$V_{ij}(r_{ij}) = \frac{q_i q_j}{r_{ij}} + A_{ij} \exp(-r_{ij}/\rho_{ij}) - \frac{C_{ij}}{r_{ij}^6}$$

GULP

Illustration

dislocation vis de vecteur de Burgers ½<110> dans MgO

Le modèle de Peierls-Nabarro-Galerkin

dislocation vis de vecteur de Burgers ½<110>

L'effet de la pression sur la structure de cœur de la dislocation vis ½<110> dans MgO

Evolution de la structure de cœur d'une dislocation vis de vecteur de Burgers ½<110> dans MgO

L'effet de la pression sur la structure de coeur de la dislocation vis $\frac{1}{2}$ <110> dans MgO

Local von Mises shear strain invariant coloring

Enthalpie critique de nucléation d'un double décrochement

Confrontation aux données expérimentales

Confirmation expérimentale -> Girard et al. (2012)

L'effet de la pression sur la structure de coeur de la dislocation vis ½<110> dans MgO

A P=0 GPa, étalement du cœur de la dislocation dans {110} => $\sigma_p^{\{110\}} \ll \sigma_p^{\{100\}}$

A P=100 GPa, étalement du cœur de la dislocation dans {100} => $\sigma_p^{\{100\}} < \sigma_p^{\{110\}}$

Enthalpie critique de nucléation d'un double décrochement

Enthalpie critique de nucléation d'un double décrochement

3 10000 2.5 1000 {110} q/_{*}м 2 1.5 1.5 100 {100} 10 {100} 0.2 0.4 0.6 0.8 0 τ/τ_Ρ {110} 0.5 0 0.2 0.4 0.6 0.8 0 1 τ/τ_P

NEB+climbing image

 $\Delta H(\tau)$

Evolution des CRSS de MgO en fonction de la pression

Temperature (K)

500

{100}

ŏ

00

{110

N

40

60

80

0

O

Pression (GPa)

3000

{110} + {100}

500

000

Amodeo et al. (2012)

Partie III: Calculs par potentiels

1/2<110> screw core structure

Quadrupole energy

$$W_{1-2}/L = -\frac{\mu b_1 b_2}{2\pi} \ln(R/R_a) = \pm 2Kb^2 \ln(d/r_c)$$

In a quadrupole, energy per dislocation per b is then given by

$$E = E_c(r_c) + Kb^3 \left(\ln(d/r_c) + A \right)$$

A contains all the effect of the infinite sums of dislocation interactions (A=0.545)

Effect of Pressure on Peierls stresses of screw dislocation

As core spreads from {110} to {100}, Peierls stresses evolve and ones may expect a change in favourable slip system from 1/2<110>{110} to 1/2<110>{100}

A A' A A' (Ya ΑА

Ya

2: Screw A'

1: Screw A

Ya

 $2U_{k} = (E_{3}+E_{4})-(E_{1}+E_{2})$

DD results in Forest regime

- ~10¹² m⁻² Dislocation density, equaly allocated to the 6 slip systems, for both glide family Dislocation density has to be consistent with the experimental value of τ_{μ} (~15 MPa)
- Strain rate chosen in the range of the dislocation dynamic behavior : strain has to be governed by forest interactions (dynamic behavior) not by dislocation velocity (quasi static behavior)

Kink pair nucleation enthalpy

(Amodeo et al. 2012)

Dislocation core structures using either "cluster" approach or Peierls-Nabarro method

structure

Atomistic "Cluster" approach

Single screw dislocation in a 300 Å x 300 Å x b cell with fixed region to elastic displacement field

Peierls-Nabarro-Galerkin method (Denoual 2004,2007)

Numerical examination of PN equations is performed using a nodal mesh, taking into account for a dislocation density in given plane Pi, interaction between dislocation density distributed in Pj, balanced with inelastic staking fault (from gamma-surface) attributed to Pi plane

[100] screw dislocations: (010), (001), (011) γ-surfaces [010] screw dislocations: (100), (001), (101) γ-surfaces