Aurélien Manchon

Localisation

R3

Grade

PU2

Function

enseignant - chercheur

manchon.jpg

Activity

Magnétisme, spintronique, matière condensée

Themes

My research concerns theoretical condensed matter physics and in particular quantum transport in heterostructures. I develop theoretical models to explore novel ways to control magnetic order parameters and spin degree of freedom by electrical, thermal and optical means. The rational behind this approach is to address fundamental problems of condensed matter (the nature of spin-orbit coupled transport in ultrathin magnetic heterostructures, the orbital physics behind Dzyaloshinskii-Moriya interaction etc.), and propose innovative mechanisms that can be exploited in disruptive spintronic devices. 

Spintronics aims at marrying the science of spin, the fundamental rotational degree of freedom of the electron, with microelectronics technology. Whereas most of the commercial microelectronics available is based on the charge of the carrier (electron or hole), the objective of spintronics is to rely on the spin of the carrier to generate low-energy consumption functional devices.

This requires a profound understanding of condensed matter physics phenomena such as spin relaxation, decoherence and dynamics in complex magnetic structures. Our group focuses on a number of topics related to spin transport in hybrid devices, including spin transfer torque, spin-orbit coupled transport and torques, topological materials and ultrafast magnetization dynamics.

 

Computational methods

In order to explore new materials and discover novel physical phenomena, we use a variety of theoretical and computational tools, ranging from phenomenological approaches to realistic modeling, such as: 

- Linear response theory, quantum kinetics and Kubo formula on model systems

- Non-equilibrium Green’s function methods implemented on real-space Hamiltonians​ (KWANT)

- Density functional theory (VASPFLEURATK etc.)

- Micromagnetic modeling (OOMMFmuMag​ etc.)

Recherche

Antiferromagnetic spintronics

Antiferromagnetic materials could represent the future of spintronic applications thanks to the numerous interesting features they combine: they are robust against perturbation due to magnetic fields, produce no stray fields, display ultrafast THz dynamics, and are capable of generating large magneto-transport effects. Our research aims at understanding spin transport and magnetization dynamics in various classes of materials presenting antiferromagnetic order and explore their ability for electric manipulation and data storage.​​​​​​​​​​​​​

For more information:

Antiferromagnetic spintronics, V. Baltz, A. Manchon, M. Tsoi, T. Moriyama, T. Ono, and Y. Tserkovnyak, Rev. Mod. Phys. 90, 015005 (2018).

The multiple directions of antiferromagnetic spintronics, T. Jungwirth, J. Sinova, A. Manchon, X. Marti, J. Wunderlich, and C. Felser, Nat. Phys. 14, 200 (2018).

Spin-orbit physics in topological materials

Topological materials are a revolutionary class of systems displaying fascinating properties such as topologically protected, spin-momentum locked surface states combined with insulating bulk, or even Weyl-type energy dispersion. As such, they do not only offer room temperature, lab-accessible test bench for the realization of particle physics ideas, but they also present outstanding opportunities for spintronics applications. Our goal is to scrutinize these various systems to exploit their spin-orbitronics capabilities and uncover novel exciting phenomena. And if, during this charming trip, we encounter effective black holes and strange quasiparticles, it’s even more fun!​​​​​​​​​

Magnetic topologies and textures

Chiral objects are ubiquitous in science and pose fundamental challenges, such as the importance of chiral molecules in commercial drugs or the dominance of matter over antimatter in the universe. Magnetic materials lacking inversion symmetry, called chiral magnets, constitute a unique platform for the exploration and control of chiral objects. Our objective here is to understand magnetization dynamics in chiral magnets and propose routes for improving these properties, always keeping in mind experimental realization and potential technological interest.

Spin-orbitronics in transition metals

Spin-orbit coupling is central to magnetism and spintronics, where it drives magnetic anisotropy, spin relaxation, magnetic damping, anisotropic magnetoresistance and anomalous Hall effect. Quite surprisingly, in spite of its already long history, this fundamental interaction has been pivotal to several revolutions in the past ten years. As a matter of fact, all the effects mentioned above exist in systems where inversion symmetry is preserved. But when inversion symmetry is broken, such as in certain classes of magnetic crystals or at interfaces, spin-orbit coupling triggers a number of fascinating phenomena such as antisymmetric magnetic exchange giving rise to topologically non-trivial magnetic textures, spin-momentum locking, spin-orbit torques, chiral magnetic damping etc. This broad area of research is called spin-orbitronics. 

For more information:

Current-induced spin-orbit torques in ferromagnetic and antiferromagnetic systems, A. Manchon, J. Zelezny, I. M. Miron, T. Jungwirth, J. Sinova, K. Garello, and P. Gamberdella, Review of Modern Physics 91, 035004 (2019).

New perspectives for Rashba spin-orbit coupling, A. Manchon, H.C. Koo, J. Nitta, S.M. Frolov, R.A. Duine, Nature Materials 14, 871–882 (2015).  

 

Parcours

EDUCATION

 2007                PhD in Physics, University Joseph Fourier & CEA/DSM/INAC/SPINTEC laboratory, Grenoble, France

2004                Master of Science “Lasers and Matter” Summa Cum Laude, Ecole Polytechnique, Palaiseau & University Paris XI, Orsay, France

2004                Master of Engineering,  Ecole Polytechnique, Palaiseau, France

CURRENT POSITION  

2019-Now       Professor of Physics, Centre Interdisciplinaire de Nanoscience de Marseille (CINaM), Aix-Marseille University, France

PREVIOUS POSITIONS  

2015-2019      Associate Professor of Materials Science and Engineering, affiliated with Electrical Engineering, King Abdullah University of Science and Technology, Saudi Arabia

2009-2015      Assistant Professor of Materials Science and Engineering, King Abdullah University of Science and Technology, Saudi Arabia

2007-2009       Postdoctoral Fellow, Department of Physics and Astronomy, University of Missouri-Columbia and University of Arizona-Tucson, USA

2004-2007       Research Fellow, CEA/DSM/INAC/SPINTEC laboratory, Grenoble, France

2003-2004       Research Assistant, ONERA, Palaiseau, France

FELLOWSHIPS AND AWARDS 

2022                IEEE Distinguished Lecturer, awarded by IEEE Magnetics Society

2020                Wohlfarth Lecturer, awarded by IOP Magnetism group and IEEE UK Magnetic Chapter.

2017                Selected by the Editorial Board of Journal of Physics: Condensed Matter as an Emerging Leader

 

Publications

2022

Global urban environmental change drives adaptation in white clover

James Santangelo, Rob Ness, Beata Cohan, Connor Fitzpatrick, Simon Innes, Sophie Koch, Lindsay Miles, Samreen Munim, Pedro Peres-Neto, Cindy Prashad, Alex Tong, Windsor Aguirre, Philips Akinwole, Marina Alberti, Jackie Álvarez, Jill Anderson, Joseph Anderson, Yoshino Ando, Nigel Andrew, Fabio Angeoletto, Daniel Anstett, Julia Anstett, Felipe Aoki-Gonçalves, A. Arietta, Mary Arroyo, Emily Austen, Fernanda Baena-Díaz, Cory Barker, Howard Baylis, Julia Beliz, Alfonso Benitez-Mora, David Bickford, Gabriela Biedebach, Gwylim Blackburn, Mannfred Boehm, Stephen Bonser, Dries Bonte, Jesse Bragger, Cristina Branquinho, Kristien Brans, Jorge Bresciano, Peta Brom, Anna Bucharova, Briana Burt, James Cahill, Katelyn Campbell, Elizabeth Carlen, Diego Carmona, Maria Clara Castellanos, Giada Centenaro, Izan Chalen, Jaime Chaves, Mariana Chávez-Pesqueira, Xiao-Yong Chen, Angela Chilton, Kristina Chomiak, Diego Cisneros-Heredia, Ibrahim Cisse, Aimée Classen, Mattheau Comerford, Camila Cordoba Fradinger, Hannah Corney, Andrew Crawford, Kerri Crawford, Maxime Dahirel, Santiago David, Robert de Haan, Nicholas Deacon, Clare Dean, Ek Del-Val, Eleftherios Deligiannis, Derek Denney, Margarete Dettlaff, Michelle Dileo, Yuan-Yuan Ding, Moisés Domínguez-López, Davide Dominoni, Savannah Draud, Karen Dyson, Jacintha Ellers, Carlos Espinosa, Liliana Essi, Mohsen Falahati-Anbaran, Jéssica Falcão, Hayden Fargo, Mark Fellowes, Raina Fitzpatrick, Leah Flaherty, Pádraic Flood, María Flores, Juan Fornoni, Amy Foster, Christopher Frost, Tracy Fuentes, Justin Fulkerson, Edeline Gagnon, Frauke Garbsch, Colin Garroway, Aleeza Gerstein, Mischa Giasson, E. Binney Girdler, Spyros Gkelis, William Godsoe, Anneke Golemiec, Mireille Golemiec, César González-Lagos, Amanda Gorton, Kiyoko Gotanda, Gustaf Granath, Stephan Greiner, Joanna Griffiths, Filipa Grilo, Pedro Gundel, Benjamin Hamilton, Joyce Hardin, Tianhua He, Stephen Heard, André Henriques, Melissa Hernández-Poveda, Molly Hetherington-Rauth, Sarah Hill, Dieter Hochuli, Kathryn Hodgins, Glen Hood, Gareth Hopkins, Katherine Hovanes, Ava Howard, Sierra Hubbard, Carlos Ibarra-Cerdeña, Carlos Iñiguez-Armijos, Paola Jara-Arancio, Benjamin Jarrett, Manon Jeannot, Vania Jiménez-Lobato, Mae Johnson, Oscar Johnson, Philip Johnson, Reagan Johnson, Matthew Josephson, Meen Chel Jung, Michael Just, Aapo Kahilainen, Otto Kailing, Eunice Kariñho-Betancourt, Regina Karousou, Lauren Kirn, Anna Kirschbaum, Anna-Liisa Laine, Jalene Lamontagne, Christian Lampei, Carlos Lara, Erica Larson, Adrián Lázaro-Lobo, Jennifer Le, Deleon Leandro, Christopher Lee, Yunting Lei, Carolina León, Manuel Lequerica Tamara, Danica Levesque, Wan-Jin Liao, Megan Ljubotina, Hannah Locke, Martin Lockett, Tiffany Longo, Jeremy Lundholm, Thomas Macgillavry, Christopher Mackin, Alex Mahmoud, Isaac Manju, Janine Mariën, D. Nayeli Martínez, Marina Martínez-Bartolomé, Emily Meineke, Wendy Mendoza-Arroyo, Thomas Merritt, Lila Elizabeth L. Merritt, Giuditta Migiani, Emily Minor, Nora Mitchell, Mitra Mohammadi Bazargani, Angela Moles, Julia Monk, Christopher Moore, Paula Morales-Morales, Brook Moyers, Miriam Muñoz-Rojas, Jason Munshi-South, Shannon Murphy, Maureen Murúa, Melisa Neila, Ourania Nikolaidis, Iva Njunjić, Peter Nosko, Juan Núñez-Farfán, Takayuki Ohgushi, Kenneth Olsen, Øystein Opedal, Cristina Ornelas, Amy Parachnowitsch, Aaron Paratore, Angela Parody-Merino, Juraj Paule, Octávio Paulo, João Carlos Pena, Vera Pfeiffer, Pedro Pinho, Anthony Piot, Ilga Porth, Nicholas Poulos, Adriana Puentes, Jiao Qu, Estela Quintero-Vallejo, Steve Raciti, Joost Raeymaekers, Krista Raveala, Diana Rennison, Milton Ribeiro, Jonathan Richardson, Gonzalo Rivas-Torres, Benjamin Rivera, Adam Roddy, Erika Rodriguez-Muñoz, José Raúl Román, Laura Rossi, Jennifer Rowntree, Travis Ryan, Santiago Salinas, Nathan Sanders, Luis Santiago-Rosario, Amy Savage, J.F. Scheepens, Menno Schilthuizen, Adam Schneider, Tiffany Scholier, Jared Scott, Summer Shaheed, Richard Shefferson, Caralee Shepard, Jacqui Shykoff, Georgianna Silveira, Alexis Smith, Lizet Solis-Gabriel, Antonella Soro, Katie Spellman, Kaitlin Stack Whitney, Indra Starke-Ottich, Jörg Stephan, Jessica Stephens, Justyna Szulc, Marta Szulkin, Ayco Tack, Ítalo Tamburrino, Tayler Tate, Emmanuel Tergemina, Panagiotis Theodorou, Ken Thompson, Caragh Threlfall, Robin Tinghitella, Lilibeth Toledo-Chelala, Xin Tong, Léa Uroy, Shunsuke Utsumi, Martijn Vandegehuchte, Acer Vanwallendael, Paula Vidal, Susana Wadgymar, Ai-Ying Wang, Nian Wang, Montana Warbrick, Kenneth Whitney, Miriam Wiesmeier, J. Tristian Wiles, Jianqiang Wu, Zoe Xirocostas, Zhaogui Yan, Jiahe Yao, Jeremy Yoder, Owen Yoshida, Jingxiong Zhang, Zhigang Zhao, Carly Ziter, Matthew Zuellig, Rebecca Zufall, Juan Zurita, Sharon Zytynska, Marc Johnson

Science 375:1275-1281 (2022)10.1126/science.abk0989