Kheya Sengupta
TPR1 - 4 étage
DR2
chercheur
G.04.20

Soft-matter, Biophysics, Nano-science
ResearcherID: E-8629-2011 || ORCID: 0000-0002-1060-2713
****For a detailed view click here ****
My current research is focused on adhesion of living and model cells. The adhesion of cells is a fundamental biological process with implications for functions ranging from tissue morphogenesis to immune response. Very often, the primary focus in cell adhesion research is on identifying the relevant adhesion proteins and signaling pathways. However, for a complete description, it is essential to also understand the physics underlying the processes that govern the adhesion. In order to study a complex phenomenon like cell adhesion, in-vitro experiments using cell mimetic systems are often useful since the experimental conditions can be better controlled. Moreover, the simplicity of such systems facilitates theoretical modeling. The insight gained from such bio-mimetic studies can then be applied to real cells. In my research, on one hand I try to make realistic models of adhering cells using giant unilamellar vesicles and on the other hand I study the adhesion of real cells under biomimetic conditions to assess the relevance of the vesicle models.
Current research :
* Adhesion and fluctuations of membranes
* Adhesion and mechanics of T lymphocytes
Membrane fluctuations mediate lateral interaction between cadherin bonds, Susanne Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta, and Ana-Suncana Smith. Nature Physics, 13, 906–913 (2017). (In News: http://www.sciencenewsline.com/news/2017061415510095.html)
50. Printing functional protein nano-dots on soft elastomers: from transfer mechanism to cell mechanosensing, Ranime Alameddine, Astrid Wahl, Fuwei Pi, Kaoutar Bouzalmate, Laurent Limozin, Anne Charrier, and Kheya Sengupta. Nano Lett., 2017, 17 (7): 4284–4290
51. T cells on engineered substrates: the impact of TCR clustering is enhanced by LFA-1 engagement
Emmanuelle Benard, Jacques A. Nunes, Laurent Limozin and Kheya Sengupta. Front. Immunol. 2018, doi: 10.3389/fimmu.2018.02085.
52. Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN). M-J. Dejardin, A. Hemmerle, A. Sadoun, Y. Hamon, P-H. Puech, K. Sengupta, and L. Limozin
Nano Lett., 2018 (DOI: 10.1021/acs.nanolett.8b03134).
53. Adhesion of Biological Membranes, K. Sengupta and A. Smith. Book Chapter in "Physics of Biological Membranes", Ed. Basserau, P. and Sens, P., Springer (2018).
54. Biphasic mechanosensitivity of TCR mediated adhesion of T lymphocytes. A. Wahl, C. Dinet, P. Dillard, P-H. Puech, L. Limozin, and K. Sengupta. PNAS (2019) https://www.pnas.org/content/early/2019/03/07/1811516116 https://www.biorxiv.org/content/early/2017/12/10/232041
55. Measuring Giant Vesicle adhesion, Ana-Suncana Smith and Kheya Sengupta, in "The Giant Vesicle Book", Edited by Carlos Marquez and Rumiana Dimova, CRC Press (2019) ISBN 9781315152516.
56. Ligand Nanocluster Array Enables Artificial-Intelligence-Based Detection of Hidden Features in T-Cell Architecture, Nano Letters (2021). DOI: 10.1021/acs.nanolett.1c01073.
57. Integrin-Functionalised Giant Unilamellar Vesicles via Gel-Assisted Formation: Good Practices and Pitfalls, International Journal of Molecular Sciences (2021) DOI: 10.3390/ijms22126335.
58. On the control of dispersion interactions between biological membranes and protein coated biointerfaces, Blackwell, Robert; Hemmerle, Arnaud; Baer, Andreas; Sengupta, Kheya; Smith, Ana-Suncana. Journal of Colloid and Interface Science (2021) DOI: 10.1016/J.JCIS.2021.02.078
59.Biomechanics as driver of aggregation of tethers in adherent membranes
Soft Matter (2021). DOI: 10.1039/d1sm00921d
60. May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology. F. Mustapha, K. Sengupta, P-H. Puech.
Frontiers in Immunology (2022). DOI: 10.3389/fimmu.2022.898558
61. Protocol for measuring weak cellular traction forces using well-controlled ultra-soft polyacrylamide gels, F. Mustapha, K. Sengupta, P-H. Puech. STAR Protocols (2022)
DOI: 10.1016/j.xpro.2022.101133
62. Physics of Organelle Membrane Bridging via Cytosolic Tethers is Distinct From Cell Adhesion Frontiers in Physics (2022)
DOI: 10.3389/fphy.2021.750539
63. First-Principle Coarse-Graining Framework for Scale-Free Bell-Like Association and Dissociation Rates in Thermal and Active Systems, J. A. Janes, C. Monzel, D. Schmidt, R. Merkel, Rudolf, U. Seifert, K. Sengupta, A-S. Smith. Phys. Rev. X (2022) 12 (3) 031030. https://link.aps.org/doi/10.1103/PhysRevX.12.031030
2023
Talin and kindlin cooperate to control the density of integrin clusters
Julien Pernier, Marcelina Cardoso Dos Santos, Mariem Souissi, Adrien Joly, Hemalatha Narassimprakash, Olivier Rossier, Grégory Giannone, Emmanuèle Helfer, Kheya Sengupta, Christophe Le Clainche
Journal of Cell Science 136:jcs260746 (2023)10.1242/jcs.260746
2022
First-Principle Coarse-Graining Framework for Scale-Free Bell-Like Association and Dissociation Rates in Thermal and Active Systems
Josip Augustin Janeš, Cornelia Monzel, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta, Ana-Sunčana Smith
Physical Review X 12:031030 (2022)10.1103/PhysRevX.12.031030
Physics of Organelle Membrane Bridging via Cytosolic Tethers is Distinct From Cell Adhesion
Mohammad Arif Kamal, Josip Augustin Janeš, Long Li, Franck Thibaudau, Ana-Sunčana Smith, Kheya Sengupta
Frontiers in Physics 9:1-12 (2022)10.3389/fphy.2021.750539
May the force be with your (immune) cells: an introduction to traction force microscopy in Immunology
Farah Mustapha, Kheya Sengupta, Pierre-Henri Puech
Frontiers in Physics 13:898558 (2022)10.3389/fimmu.2022.898558
Protocol for measuring weak cellular traction forces using well-controlled ultra-soft polyacrylamide gels
Farah Mustapha, Kheya Sengupta, Pierre-Henri Puech
STAR Protocols 3:101133 (2022)10.3389/fimmu.2022.898558
2021
On the control of dispersion interactions between biological membranes and protein coated biointerfaces
Robert Blackwell, Arnaud Hemmerle, Andreas Baer, Matthias Späth, Wolfgang Peukert, Drew Parsons, Kheya Sengupta, Ana-Sunčana Smith
Journal of Colloid and Interface Science 598:464-473 (2021)10.1016/j.jcis.2021.02.078
Biomechanics as driver of aggregation of tethers in adherent membranes
Long Li, Mohammad Arif Kamal, Bernd Henning Stumpf, Franck Thibaudau, Kheya Sengupta, Ana-Sunčana Smith
Soft Matter 17:10101-10107 (2021)10.1039/d1sm00921d
Ligand Nanocluster Array Enables Artificial-Intelligence-Based Detection of Hidden Features in T-Cell Architecture
Aya Nassereddine, Ahmed Abdelrahman, Emmanuelle Benard, F. Bedu, Igor Ozerov, Laurent Limozin, Kheya Sengupta
Nano Letters 21:5606-5613 (2021)10.1021/acs.nanolett.1c01073
On the control of dispersion interactions between biological membranes and protein coated biointerfaces
Kheya Sengupta, Robert Blackwell, Arnaud Hemmerle, Andreas Baer, Matthias Späth, Wolfgang Peukert, Drew Parsons, Ana-Sunčana Smith
Journal of Colloid and Interface Science 598:464-473 (2021)10.1016/j.jcis.2021.02.078
2019
Biphasic mechanosensitivity of T cell receptor-mediated spreading of lymphocytes
Astrid Wahl, Céline Dinet, Pierre Dillard, Aya Nassereddine, Pierre-Henri Puech, Laurent Limozin, Kheya Sengupta
Proceedings of the National Academy of Sciences of the United States of America 116:5908-5913 (2019)10.1073/pnas.1811516116
2018
T Cells on Engineered Substrates: The Impact of TCR Clustering Is Enhanced by LFA-1 Engagement
Emmanuelle Benard, Jacques Nunès, Laurent Limozin, Kheya Sengupta
Frontiers in Immunology 9 (2018)10.3389/fimmu.2018.02085
Lamellipod Reconstruction by Three-Dimensional Reflection Interference Contrast Nanoscopy (3D-RICN)
Marie-Julie Dejardin, Arnaud Hemmerle, Anais Sadoun, Yannick Y. Hamon, Puech Pierre-Henri, Kheya Sengupta, Laurent Limozin
Nano Letters 18:6544-6550 (2018)10.1021/acs.nanolett.8b03134
2017
Printing functional protein nano-dots on soft elastomers: from transfer mechanism to cell mechanosensing
Ranime Alameddine, Astrid Wahl, Fuwei Pi, Kaoutar Bouzalmate, Laurent Limozin, Anne Charrier, Kheya Sengupta
Nano Letters 17:4284-4290 (2017)10.1021/acs.nanolett.7b01254
Ligand Nano-cluster Arrays in a Supported Lipid Bilayer
Emmanuelle Benard, Fuwei Pi, Igor Ozerov, Anne Charrier, Kheya Sengupta
Journal of visualized experiments : JoVE 122:e55060 (2017)10.3791/55060
Membrane fluctuations mediate lateral interaction between cadherin bonds
Susanne Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Udo Seifert, Kheya Sengupta, Ana-Sunčana Smith
Nature Physics 13:906-913 (2017)10.1038/NPHYS4138
2016
Nano-clustering of ligands on surrogate antigen presenting cells modulates T cell membrane adhesion and organization
Pierre Dillard, Fuwei Pi, Annemarie Lellouch, Laurent Limozin, Kheya Sengupta
Integrative biology 8:287-301 (2016)10.1039/C5IB00293A
Membrane Mediated Cooperativity Facilitates Cadherin Clustering in Model Membranes
Susanne Fenz, Timo Bihr, Daniel Schmidt, Rudolf Merkel, Kheya Sengupta, Udo Seifert, Ana-Suncana Smith
Biophysical Journal 110:190A (2016)10.1016/j.bpj.2015.11.1058
Measuring shape fluctuations in biological membranes
C. Monzel, K. Sengupta
Journal of Physics D: Applied Physics 49:243002 (2016)10.1088/0022-3727/49/24/243002
Dynamic Optical Displacement Spectroscopy to Quantify Biomembrane Bending Fluctuations
Cornelia Monzel, Daniel Schmidt, Udo Seifert, Ana-Suncana Smith, Kheya Sengupta, Rudolf Merkel
Biophysical Journal 110:487A (2016)10.1016/j.bpj.2015.11.2603
Nanometric thermal fluctuations of weakly confined biomembranes measured with microsecond time-resolution
Cornelia Monzel, Daniel Schmidt, Udo Seifert, Ana-Suncana Smith, Rudolf Merkel, Kheya Sengupta
Soft Matter 12:4755-4768 (2016)10.1039/c6sm00412a
2015
Size-Tunable Organic Nanodot Arrays: A Versatile Platform for Manipulating and Imaging Cells
Fuwei Pi, Pierre Dillard, Ranime Alameddine, Emmanuelle Benard, Astrid Wahl, Igor Ozerov, Anne Charrier, Laurent Limozin, Kheya Sengupta
Nano Letters 15:5178-5184 (2015)10.1021/acs.nanolett.5b01400
2014
Signature of a Nonharmonic Potential as Revealed from a Consistent Shape and Fluctuation Analysis of an Adherent Membrane
D. Schmidt, C. Monzel, T. Bihr, R. Merkel, U. Seifert, K. Sengupta, A.S. Smith
Physical Review X 4:021023 (2014)10.1103/PhysRevX.4.021023
2013
Nanometric Protein-Patch Arrays on Glass and Polydimethylsiloxane for Cell Adhesion Studies
Fuwei Pi, Pierre Dillard, Laurent Limozin, Anne Charrier, Kheya Sengupta
Nano Letters 13:3372-3378 (2013)10.1021/nl401696m
A bola-phospholipid containing tetrafluorophenylazido chromophore as a promising lipid probe for biomembrane photolabeling studies
Y. Xia, K. Sengupta, A. Maggiani, F. Qu, Ling Peng
2012
Mapping Fluctuations in Biomembranes Adhered to Micropatterns
C. Monzel, S.F. Fenz, M. Giesen, R. Merkel, K. Sengupta
Heavy fermion superconductor CeCu 2 Si 2 under high pressure: Multiprobing the valence crossover
Gabriel Seyfarth, A.-S. Rüetschi, K. Sengupta, A. Georges, D. Jaccard, S. Watanabe, K. Miyake
Physical Review B: Condensed Matter and Materials Physics (1998-2015) 85:205105 (2012)10.1103/PhysRevB.85.205105
Proximity to valence transition in heavy fermion superconductor CeCu 2 Si 2 under pressure
Gabriel Seyfarth, A.-S. Rüetschi, K. Sengupta, A. Georges, D. Jaccard
EPL - Europhysics Letters 98:17012 (2012)10.1209/0295-5075/98/17012
Depth matters: cells grown on nano-porous anodic alumina respond to pore depth
S. Thakur, S. Massou, A.M. Benoliel, P. Bongrand, M. Hanbücken, K. Sengupta
2011
Blebbing dynamics during endothelial cell spreading
L. Norman, K. Sengupta, H. Aranda-Espinoza